Advanced SiC power module packaging technology direct on DBA substrate for high temperature applications: Ag sinter joining and encapsulation resin adhesion

Author(s):  
Chuantong Chen ◽  
Zheng Zhang ◽  
Katsuaki Suganuma
2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000149-000158
Author(s):  
Xin Zhao ◽  
Haotao Ke ◽  
Yifan Jiang ◽  
Adam Morgan ◽  
Yang Xu ◽  
...  

Abstract This paper presents design, fabrication and characterization details of a 10kV power module package for >200°C ambient temperature applications. Electrical simulations were performed to confirm the module design, and that the electric field distribution throughout the module did not exceed dielectric capabilities of components and materials. A suitable copper etching process was demonstrated for DBC layout, and a high melting point Sn/Pb/Ag solder reflow process was developed for device and component attachment. To monitor the operational temperature of the module, a thermistor was integrated onto the substrate. A new silicone gel, having a working temperature up to 210°C, was evaluated and selected for encapsulation and, of great importance, for passivation of high voltage (10kV) SiC dies. An additive manufacturing ‘Design Process’ was developed and applied to printing the housings, molds, and test fixtures. Also, cleaning processes were evaluated for every step in the fabrication process. To verify performance of the modules, mechanical dies were mounted on the substrates, and a high temperature testing setup built to characterize the modules at high temperature. Measurements indicated that the module can operate up to 12kV within 25°C to 225°C, with less than 0.1 μA leakage current. The packaging was used for full-power characterization of developmental 10kV SiC diodes, and proved that the power module packaging satisfied all requirements for high voltage and high temperature applications. This work successfully validated the processes for creating high voltage (>10 kV) and high temperature (>200°C) power modules.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Alloy Digest ◽  
1952 ◽  
Vol 1 (2) ◽  

Abstract Flylite ZRE-1 is a creep resistant magnesium-base alloy primarily designed for jet engine components and other high temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Mg-2. Producer or source: Howard Foundry Company.


Alloy Digest ◽  
1978 ◽  
Vol 27 (6) ◽  

Abstract THERMALLOY 63W is a cast nickel-chromium-tungsten-iron alloy produced for service at temperature up to 1900 F. Centrifugally cast reformer tubes comprise one of its high-temperature applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-352. Producer or source: Abex Corporation, Engineered Products Division.


Sign in / Sign up

Export Citation Format

Share Document