Heavy metals recovery from spent catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans

Author(s):  
R. Mafi Gholami ◽  
S. M. Borghei ◽  
S. M. Mousavi
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3336
Author(s):  
Tomasz Kamizela ◽  
Anna Grobelak ◽  
Malgorzata Worwag

Among the methods used to remove metals and their compounds from landfill leachates with low application costs and high efficiency are bioleaching and biosorption. The most effective bacteria used in the metal removal process are Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The aim of the study was to determine the usefulness of the A. ferrooxidans and A. thiooxidans population in removing heavy metals from landfill leachate. In addition, development opportunities for bacterial population using landfill leachate as growth medium were identified. The substrate for the research was the raw leachate before the reverse osmosis process. In order to increase the efficiency of trace elements removal and recovery from leachate, variable combinations have been used which differ by the addition of sulfuric acid, A. ferrooxidans culture, A. thiooxidans culture, mixed culture containing populations of both bacteria, and elemental sulfur. Based on the research, it was found that the removal of heavy metals from leachate was a selective process. High bioleaching efficiency, from 80% to 90%, was obtained for all metals for which the sample acidification or sulfur addition was used. The simultaneous combination of both these additives turned out to be the most advantageous. The A. thiooxidans culture was the most effective in bioleaching reverse osmosis effluents. For the A. ferrooxidans culture used, much lower efficiencies were obtained, while by contrast, the use of mixed culture of two bacterium species had no significant effect.


Author(s):  
Alexandra Kucmanová ◽  
Zuzana Sanny ◽  
Kristína Gerulová ◽  
Matej Pašák ◽  
Imrich Czére

Abstract Nowadays, we can hardly imagine our life without the achievements of modern technology, such as refrigerators, televisions, computers, or smartphones. Producers are pushing consumers to buy newer, more modern appliances instead of repairing the original ones. However, all the devices represent a huge amount of waste. E-waste is one of the fastest growing types of waste, and only less than a half of it is recycled. Its disposal poses a great challenge for the population and constitutes a huge burden for the environment. In the research described in this article, we focused on individual techniques for metals recovery from e-waste. In the experimental part, we deal with the recycling of electronic waste by bioleaching, using microorganisms Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Compared to conventional techniques, bioleaching is a more environmentally friendly and economical alternative of metals recovery from e-waste.


2021 ◽  
Vol 97 ◽  
pp. 460-465
Author(s):  
M.S. Ahmed ◽  
T.M. Zewail ◽  
E-S.Z. El-Ashtoukhy ◽  
H.A. Farag ◽  
I.H. El Azab ◽  
...  

Author(s):  
Gerardo Andrés Caicedo Pineda ◽  
Marco Antonio Márquez Godoy

<p>Se llevaron a cabo procesos de biodesulfurización de dos carbones colombianos ricos en azufre (“Mina Vieja” y “Vampiro”), en reactores de lecho empacado a nivel de erlenmeyer, utilizando un consorcio de Acidithiobacillus ferrooxidans (ATCC 23270) y Acidithiobacillus thiooxidans (ATCC 15494), evaluando la adición de cisteína a la solución lixiviante. Los ensayos fueron monitoreados por medidas de hierro en solución, pH y potencial redox. Adicionalmente, se hicieron análisis mineralógicos por difracción de rayos X (DRX) antes y después de los experimentos. Los ensayos sin adición de cisteína alcanzaron una oxidación de pirita de 45.3% y 57.9% para “Mina Vieja” y “Vampiro” respectivamente. Cuando se adicionó cisteína, la oxidación aumentó en 14.9% para “Mina Vieja” y 6.4% para “Vampiro”. Por otra parte, todos los ensayos evidenciaron remoción de caolinita, debido a su interacción con el ácido sulfúrico del medio. Con base en los resultados obtenidos, los componentes del carbón influenciaron tanto crecimiento bacteriano como la eficiencia de la cisteína sobre el grado de pirita oxidada.</p>


2018 ◽  
Vol 792 ◽  
pp. 133-139 ◽  
Author(s):  
Toapanta Germania ◽  
Caterine Donoso ◽  
María José Cárdenas ◽  
Amón Bolívar ◽  
Vladimir Ortiz

Spent catalysts contain metals that have a high added value. From all metals, lanthanum has attracted a lot of attention due to the growing demand in the high-tech. The spent catalyst of the hydrotreatment unit is a material composed of lanthanum-enriched matrix of amorphous aluminosilicates. The experiment was carried out with a spent catalyst with a constant particle size of 90 μm. The treatments were obtained applying of two level factorial design to investigate the effect of following factors: temperature (20 - 60 °C), nitric acid concentration (3 - 6 M), leaching time (1 - 4 h) and percent solids (10 - 20 %). The research is carried out in two steps process: pretreatment of the catalyst and leaching with nitric acid. The leaching results show a yield of lanthanum of 99.44% using the following conditions: temperature (20 °C), nitric acid concentration (3M), leaching time (1 h), percent solids (20%) and 300 rpm. The principal analysis of the spent catalyst was carried out using the X-Ray Fluorescence (XRF) technique, 3.08%, while the percentage of lanthanum recovery in the extract, washing and refining was carried out using the Inductive Coupling Plasma (ICP) technique.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 82 ◽  
Author(s):  
Aijia Chen ◽  
Xiaodong Hao ◽  
Yunhua Xiao ◽  
Kai Zou ◽  
Hongwei Liu ◽  
...  

Acidithiobacillus thiooxidans A01 is widely used in bioleaching processes and commonly thrives in most metal-rich environments. However, interactions between different heavy metals remain obscure. In this study, we elaborated the effect of ferric iron on the growth and gene expression of At. thiooxidans A01 under the stress of nickel. The results showed that 600 mM Ni2+ completely inhibited the growth and sulfur metabolism of At. thiooxidans A01. However, trace amounts of Fe3+ (0.5 mM) facilitated the growth of At. thiooxidans A01 in the presence of 600 mM Ni2+. With the addition of 5 mM Fe3+, the maximum cell density reached 1.84 × 108 cell/mL, and pH value was 0.95. In addition, metal resistance-related and sulfur metabolism genes were significantly up regulated with extra ferric iron. Taking the whole process into account, the promoting effect of Fe3+ addition can be attributed to the following: (1) alleviation of the effects of Ni2+ toxicity and restoring the growth of At. thiooxidans A01, (2) a choice of multiple pathways to export nickel ion and producing precursor of chelators of heavy metals. This can suggest that microorganisms may widely exhibit metabolic activity in iron-rich environments with heavy metals. Our study will facilitate the technique development for the processing of ore bodies with highly challenging ore compositions.


Sign in / Sign up

Export Citation Format

Share Document