Machine learning-based Selection of Optimal sports Team based on the Players Performance

Author(s):  
Monali Shetty ◽  
Sankalp Rane ◽  
Chaitanya Pandita ◽  
Suyash Salvi
2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


2021 ◽  
pp. 0887302X2199594
Author(s):  
Ahyoung Han ◽  
Jihoon Kim ◽  
Jaehong Ahn

Fashion color trends are an essential marketing element that directly affect brand sales. Organizations such as Pantone have global authority over professional color standards by annually forecasting color palettes. However, the question remains whether fashion designers apply these colors in fashion shows that guide seasonal fashion trends. This study analyzed image data from fashion collections through machine learning to obtain measurable results by web-scraping catwalk images, separating body and clothing elements via machine learning, defining a selection of color chips using k-means algorithms, and analyzing the similarity between the Pantone color palette (16 colors) and the analysis color chips. The gap between the Pantone trends and the colors used in fashion collections were quantitatively analyzed and found to be significant. This study indicates the potential of machine learning within the fashion industry to guide production and suggests further research expand on other design variables.


2021 ◽  
Vol 23 (4) ◽  
pp. 2742-2752
Author(s):  
Tamar L. Greaves ◽  
Karin S. Schaffarczyk McHale ◽  
Raphael F. Burkart-Radke ◽  
Jason B. Harper ◽  
Tu C. Le

Machine learning models were developed for an organic reaction in ionic liquids and validated on a selection of ionic liquids.


Author(s):  
Zhongyu Wan ◽  
Quan-De Wang ◽  
Dongchang Liu ◽  
Jinhu Liang

Enzyme-catalyzed synthesis reactions are of crucial importance for a wide range of applications. An accurate and rapid selection of optimal synthesis conditions is crucial and challenging for both human knowledge...


Procedia CIRP ◽  
2021 ◽  
Vol 96 ◽  
pp. 272-277
Author(s):  
Hannah Lickert ◽  
Aleksandra Wewer ◽  
Sören Dittmann ◽  
Pinar Bilge ◽  
Franz Dietrich

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Go-Eun Yu ◽  
Younhee Shin ◽  
Sathiyamoorthy Subramaniyam ◽  
Sang-Ho Kang ◽  
Si-Myung Lee ◽  
...  

AbstractBellflower is an edible ornamental gardening plant in Asia. For predicting the flower color in bellflower plants, a transcriptome-wide approach based on machine learning, transcriptome, and genotyping chip analyses was used to identify SNP markers. Six machine learning methods were deployed to explore the classification potential of the selected SNPs as features in two datasets, namely training (60 RNA-Seq samples) and validation (480 Fluidigm chip samples). SNP selection was performed in sequential order. Firstly, 96 SNPs were selected from the transcriptome-wide SNPs using the principal compound analysis (PCA). Then, 9 among 96 SNPs were later identified using the Random forest based feature selection method from the Fluidigm chip dataset. Among six machines, the random forest (RF) model produced higher classification performance than the other models. The 9 SNP marker candidates selected for classifying the flower color classification were verified using the genomic DNA PCR with Sanger sequencing. Our results suggest that this methodology could be used for future selection of breeding traits even though the plant accessions are highly heterogeneous.


Author(s):  
Anastasiia Ivanitska ◽  
Dmytro Ivanov ◽  
Ludmila Zubik

The analysis of the available methods and models of formation of recommendations for the potential buyer in network information systems for the purpose of development of effective modules of selection of advertising is executed. The effectiveness of the use of machine learning technologies for the analysis of user preferences based on the processing of data on purchases made by users with a similar profile is substantiated. A model of recommendation formation based on machine learning technology is proposed, its work on test data sets is tested and the adequacy of the RMSE model is assessed. Keywords: behavior prediction; advertising based on similarity; collaborative filtering; matrix factorization; big data; machine learning


2021 ◽  
Author(s):  
Octavian Dumitru ◽  
Gottfried Schwarz ◽  
Mihai Datcu ◽  
Dongyang Ao ◽  
Zhongling Huang ◽  
...  

<p>During the last years, much progress has been reached with machine learning algorithms. Among the typical application fields of machine learning are many technical and commercial applications as well as Earth science analyses, where most often indirect and distorted detector data have to be converted to well-calibrated scientific data that are a prerequisite for a correct understanding of the desired physical quantities and their relationships.</p><p>However, the provision of sufficient calibrated data is not enough for the testing, training, and routine processing of most machine learning applications. In principle, one also needs a clear strategy for the selection of necessary and useful training data and an easily understandable quality control of the finally desired parameters.</p><p>At a first glance, one could guess that this problem could be solved by a careful selection of representative test data covering many typical cases as well as some counterexamples. Then these test data can be used for the training of the internal parameters of a machine learning application. At a second glance, however, many researchers found out that a simple stacking up of plain examples is not the best choice for many scientific applications.</p><p>To get improved machine learning results, we concentrated on the analysis of satellite images depicting the Earth’s surface under various conditions such as the selected instrument type, spectral bands, and spatial resolution. In our case, such data are routinely provided by the freely accessible European Sentinel satellite products (e.g., Sentinel-1, and Sentinel-2). Our basic work then included investigations of how some additional processing steps – to be linked with the selected training data – can provide better machine learning results.</p><p>To this end, we analysed and compared three different approaches to find out machine learning strategies for the joint selection and processing of training data for our Earth observation images:</p><ul><li>One can optimize the training data selection by adapting the data selection to the specific instrument, target, and application characteristics [1].</li> <li>As an alternative, one can dynamically generate new training parameters by Generative Adversarial Networks. This is comparable to the role of a sparring partner in boxing [2].</li> <li>One can also use a hybrid semi-supervised approach for Synthetic Aperture Radar images with limited labelled data. The method is split in: polarimetric scattering classification, topic modelling for scattering labels, unsupervised constraint learning, and supervised label prediction with constraints [3].</li> </ul><p>We applied these strategies in the ExtremeEarth sea-ice monitoring project (http://earthanalytics.eu/). As a result, we can demonstrate for which application cases these three strategies will provide a promising alternative to a simple conventional selection of available training data.</p><p>[1] C.O. Dumitru et. al, “Understanding Satellite Images: A Data Mining Module for Sentinel Images”, Big Earth Data, 2020, 4(4), pp. 367-408.</p><p>[2] D. Ao et. al., “Dialectical GAN for SAR Image Translation: From Sentinel-1 to TerraSAR-X”, Remote Sensing, 2018, 10(10), pp. 1-23.</p><p>[3] Z. Huang, et. al., "HDEC-TFA: An Unsupervised Learning Approach for Discovering Physical Scattering Properties of Single-Polarized SAR Images", IEEE Transactions on Geoscience and Remote Sensing, 2020, pp.1-18.</p>


2021 ◽  
Author(s):  
Jamal Ahmadov

Abstract The Tuscaloosa Marine Shale (TMS) formation is a clay- and liquid-rich emerging shale play across central Louisiana and southwest Mississippi with recoverable resources of 1.5 billion barrels of oil and 4.6 trillion cubic feet of gas. The formation poses numerous challenges due to its high average clay content (50 wt%) and rapidly changing mineralogy, making the selection of fracturing candidates a difficult task. While brittleness plays an important role in screening potential intervals for hydraulic fracturing, typical brittleness estimation methods require the use of geomechanical and mineralogical properties from costly laboratory tests. Machine Learning (ML) can be employed to generate synthetic brittleness logs and therefore, may serve as an inexpensive and fast alternative to the current techniques. In this paper, we propose the use of machine learning to predict the brittleness index of Tuscaloosa Marine Shale from conventional well logs. We trained ML models on a dataset containing conventional and brittleness index logs from 8 wells. The latter were estimated either from geomechanical logs or log-derived mineralogy. Moreover, to ensure mechanical data reliability, dynamic-to-static conversion ratios were applied to Young's modulus and Poisson's ratio. The predictor features included neutron porosity, density and compressional slowness logs to account for the petrophysical and mineralogical character of TMS. The brittleness index was predicted using algorithms such as Linear, Ridge and Lasso Regression, K-Nearest Neighbors, Support Vector Machine (SVM), Decision Tree, Random Forest, AdaBoost and Gradient Boosting. Models were shortlisted based on the Root Mean Square Error (RMSE) value and fine-tuned using the Grid Search method with a specific set of hyperparameters for each model. Overall, Gradient Boosting and Random Forest outperformed other algorithms and showed an average error reduction of 5 %, a normalized RMSE of 0.06 and a R-squared value of 0.89. The Gradient Boosting was chosen to evaluate the test set and successfully predicted the brittleness index with a normalized RMSE of 0.07 and R-squared value of 0.83. This paper presents the practical use of machine learning to evaluate brittleness in a cost and time effective manner and can further provide valuable insights into the optimization of completion in TMS. The proposed ML model can be used as a tool for initial screening of fracturing candidates and selection of fracturing intervals in other clay-rich and heterogeneous shale formations.


Sign in / Sign up

Export Citation Format

Share Document