The History and Significance of the Carbon Oxide Ratio

Author(s):  
Randy Cox
Keyword(s):  
2018 ◽  
Vol 5 (2) ◽  
pp. 37-51 ◽  
Author(s):  
O. Demydenko ◽  
Yu. Zapasna ◽  
V. Velychko

Aim. To substantiate the agroecological estimation of the performance of a short crop rotation in conditions of intense and organic system of fertilization on the basis of restoring normative parameters of emission and se- questration of С-СО 2 circulation while using by-products as organic fertilizers in conditions of modern climatic system of the Forest-Steppe of Ukraine. Methods. Field, statistical, laboratory. Results of Investigations. The performance of short crop rotations is determined by the capacity of С-СО 2 balance. Strong inverse correla- tion was found between the capacity of N and the ratio between C and N in the agrocenosis, which demon- strated that enhancing the humifi cation processes (ratio constriction) led to the increase in the capacity of С org balance and the decrease in the capacity level of С-СО 2 balance (enhancing mineralization), related to the reduction in the performance of crops in the agrocenosis of a crop rotation compared to the organic system of fertilization. The capacity of С-СО 2 and С org balance correlates at the medium level of inverse direction, and the yield of the main products, feed units and digestible protein correlates at the level of strong direct correlation. Conclusions. General mineralization of by-products and humus in the agrocenosis and humifi cation processes are antagonists, so extending the ratio between С and N at the intense fertilization system stimulates the in- crease in performance and reducing С to N similar to the organic fertilization system enhances the humifi cation process due to binding of С org into humus and limits mineralization which leads to the reduction in agrocenosis performance at the organic fertilization system.


2010 ◽  
Vol 126 (3) ◽  
pp. 545-551.e4 ◽  
Author(s):  
Nathan Rabinovitch ◽  
Nora J. Graber ◽  
Vernon M. Chinchilli ◽  
Christine A. Sorkness ◽  
Robert S. Zeiger ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 935 ◽  
Author(s):  
Lakshmi Prasanna Lingamdinne ◽  
Jong-Soo Choi ◽  
Yu-Lim Choi ◽  
Jae-Kyu Yang ◽  
Janardhan Reddy Koduru ◽  
...  

Graphitic carbon oxide (GCO) and magnetic graphitic carbon oxide (MGCO) were prepared from sugar via optimized green activation by employing ozone oxidation, and applied to wastewater treatment. The maximal oxidation and adsorption yield of pollutants were achieved at pH 2.0−4.0, which is the optimized pH for ozone oxidation of GC to generate GCO. As-prepared GCO and MGCO were characterized using X-ray, infrared, and microscopic techniques. The MGCO has enough saturation magnetization (MS) of 41.38 emu g−1 for separation of the sorbent from the reaction medium by applying an external magnetic field. Batch adsorption of radioactive and heavy metals (Th(IV), Pb(II)), and a dye (methylene blue (MB)) using GCO and MGCO was evaluated by varying the adsorbent dose, equilibrium pH, contact time, initial metal and dye concentrations, and kinetics and isotherms. Adsorption kinetics and isotherm studies indicated that Th(IV), Pb(II), and MB adsorption were best described by pseudo-second-order kinetics and Langmuir isotherm with R2 (correlation coefficient) > 0.99, respectively. The maximum adsorption capacities for Th(IV), Pb(II), and MB were 52.63, 47.39, and 111.12 mg g−1 on GCO and 76.02, 71.94, and 76.92 mg g−1 on MGCO. GCO and MGCO are prospectively effective and low-cost adsorbents for ion removal in wastewater treatment. As prepared MGCO can be reused up to three cycles for Th(IV), Pb(II), and MB. This work provides fundamental information about the equilibrium adsorption isotherms and mechanisms for Th(IV), Pb(II), and MB on GCO and MGCO.


Vacuum ◽  
2021 ◽  
pp. 110648
Author(s):  
Sarawut Kondee ◽  
Onsuda Arayawut ◽  
Weeraphat Pon-On ◽  
Chatchawal Wongchoosuk

Author(s):  
C. J. Wormald ◽  
J.-P. E. Grolier ◽  
J.-C. Fontaine ◽  
K. Sosnkowska-Kehiaian ◽  
H. V. Kehiaian
Keyword(s):  

2020 ◽  
Vol 229 ◽  
pp. 04002
Author(s):  
Matthew Gott ◽  
John Greene ◽  
Igor Pavlovsky ◽  
Richard Fink

Thin, isotopic 14C foils are of great interest to the nuclear physics community as neutron-rich targets. Historically, these foils have been extremely difficult to prepare and an effort is underway to make them readily available. The stock material of 14C available at Argonne contains a number of oxide impurities (SiO2, MgO, and Al2O3), which affect the composition and stability of the fabricated foil. A simple, robust method was developed (using natC as a surrogate) to purify the 14C material while minimizing loss and potential spread of the material. Thin foils were fabricated using the purified carbon, the unpurified carbon/oxide mix, and purchased high-purity carbon powder. SEM and EDS of the resulting foils was performed and the efficacy of this purification method was demonstrated.


2019 ◽  
Vol 10 (1) ◽  
pp. 142
Author(s):  
Seokhun Kwon ◽  
Hyeokjoo Choi ◽  
Wonseok Choi ◽  
Hyunil Kang

Although the carbon nanowall is a remarkable material in various fields, it generally shows near hydrophobicity. For modification of hydrophilicity, various modification techniques have been utilized, however, most of the techniques adopted a modification to carbon oxide by chemical processing and plasma treatment, which induce carbon lattice defects, causing the decline of the carbon nanowall quality. While we introduce an eco-friendly modification technique that causes non-defect of carbon lattice and maintains intrinsic carbon nanowall properties by depositing ITO on pristine-carbon nanowall for inducing hydrophilicity. The morphology of carbon nanowall (CNW)/ indium tin oxide (ITO) microstructure was examined by FE-SEM, and the functional group and oxygen components of ITO were investigated by analyzing XPS. The contact angles were measured for wettability analysis according to the surface thickness of ITO.


2012 ◽  
Vol 594-597 ◽  
pp. 2451-2454
Author(s):  
Feng Lan Zhao ◽  
Ji Rui Hou ◽  
Shi Jun Huang

CO2is inclined to dissolve in crude oil in the reservoir condition and accordingly bring the changes in the crude oil composition, which will induce asphaltene deposition and following formation damage. In this paper, core flooding device is applied to study the effect of asphaltene deposition on flooding efficiency. From the flooding results, dissolution of CO2into oil leads to recovery increase because of crude oil viscosity reduction. But precipitated asphaltene particles may plug the pores and throats, which will make the flooding effects worse. Under the same experimental condition and with equivalent crude oil viscosity, the recovery of oil with higher proportion of precipitated asphaltene was relatively lower during the CO2flooding, so the asphltene precipitation would affect CO2displacement efficiSubscript textency and total oil recovery to some extent. Combination of static diffusion and dynamic oil flooding would provide basic parameters for further study of the CO2flooding mechanism and theoretical evidence for design of CO2flooding programs and forecasting of asphaltene deposition.


Sign in / Sign up

Export Citation Format

Share Document