Design of a compact and low supply voltage CMOS voltage reference generator

Author(s):  
Pinar Basak Basyurt ◽  
Edoardo Bonizzoni ◽  
Franco Maloberti ◽  
Devrim Yilmaz Aksin
2013 ◽  
Vol 44 (12) ◽  
pp. 1145-1153 ◽  
Author(s):  
Yanhan Zeng ◽  
Yirong Huang ◽  
Yunling Luo ◽  
Hong-Zhou Tan

2014 ◽  
Vol 81 (1) ◽  
pp. 313-324 ◽  
Author(s):  
Liangbo Xie ◽  
Jiaxin Liu ◽  
Yao Wang ◽  
Yu Han ◽  
Guangjun Wen

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1271
Author(s):  
Brito ◽  
Colombo ◽  
Moreno ◽  
El-Sankary

This work presents an investigation of the temperature behavior of self-cascode composite transistors (SCCTs). Results supported by silicon measurements show that SCCTs can be used to generate a proportional to absolute temperature voltage or even a temperature-compensated voltage. Based on the achieved results, a new circuit topology of a resistorless voltage reference circuit using a Schottky diode is also presented. The circuit was fabricated in a 130 nm BiCMOS process and occupied a silicon area of 67.98 µm × 161.7 µm. The averaged value of the output voltage is 720.4 mV, and its averaged line regulation performance is 2.3 mV/V, calculated through 26 characterized chip samples. The averaged temperature coefficient (TC) obtained through five chip samples is 56 ppm/°C in a temperature range from −40 to 85°C. A trimming circuit is also included in the circuit topology to mitigate the impact of the fabrication process effects on its TC. The circuit operates with a supply voltage range from 1.1 to 2.5 V.


2011 ◽  
Vol 40 (8) ◽  
pp. 745-758 ◽  
Author(s):  
A. Tsitouras ◽  
F. Plessas ◽  
M. Birbas ◽  
J. Kikidis ◽  
G. Kalivas

2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740069 ◽  
Author(s):  
Liangwei Dong ◽  
Yueli Hu

A novel low-voltage low-power CMOS voltage reference independent of temperature is presented in this design. After considering the combined effect of (1) a perfect suppression of the temperature dependence of mobility; (2) the compensation of the channel length modulation effect on the temperature coefficient, a temperature coefficient of 10 ppm/[Formula: see text]C is achieved. Moreover, by adopting the subthreshold MOSFETs, there are no resistors used in the proposed structure. Therefore, the maximum supply current measured at the maximum supply voltage is 70 nA and at 80[Formula: see text]C. The circuit can be used as a voltage reference for high performance and low power dissipation on a single chip.


Sign in / Sign up

Export Citation Format

Share Document