Machine Learning-based Real-Time Sensor Drift Fault Detection using Raspberry Pi

Author(s):  
Umer Saeed ◽  
Sana Ullah Jan ◽  
Young-Doo Lee ◽  
Insoo Koo
Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6349
Author(s):  
Jawad Ahmad ◽  
Johan Sidén ◽  
Henrik Andersson

This paper presents a posture recognition system aimed at detecting sitting postures of a wheelchair user. The main goals of the proposed system are to identify and inform irregular and improper posture to prevent sitting-related health issues such as pressure ulcers, with the potential that it could also be used for individuals without mobility issues. In the proposed monitoring system, an array of 16 screen printed pressure sensor units was employed to obtain pressure data, which are sampled and processed in real-time using read-out electronics. The posture recognition was performed for four sitting positions: right-, left-, forward- and backward leaning based on k-nearest neighbors (k-NN), support vector machines (SVM), random forest (RF), decision tree (DT) and LightGBM machine learning algorithms. As a result, a posture classification accuracy of up to 99.03 percent can be achieved. Experimental studies illustrate that the system can provide real-time pressure distribution value in the form of a pressure map on a standard PC and also on a raspberry pi system equipped with a touchscreen monitor. The stored pressure distribution data can later be shared with healthcare professionals so that abnormalities in sitting patterns can be identified by employing a post-processing unit. The proposed system could be used for risk assessments related to pressure ulcers. It may be served as a benchmark by recording and identifying individuals’ sitting patterns and the possibility of being realized as a lightweight portable health monitoring device.


India is an agricultural country. A total of 61.5% of the people cultivate in India. Due to lack of agricultural land and change of weather, manytypes of diseases occur on crops and insects are born.Therefore, the production of crops is coming down. To reduce this problem, Internet of Things technology will prove to be an important role. In this system, a sensor network will be created on agricultural land using Raspberry Pi 3 model. The images of the crops will be taken by sensor cameras and these images will be sent to the cloud server via Raspberry Pi 3 model. In this proposed methodology, various image processing techniques willbe apply on acquired images for classification of crop diseases using k-means clustering algorithm with unsupervised machine learning. This paper will also shows the method of image processing technique such as image acquisition, image pre-processing, image segmentation and feature extraction for classification of crop diseases.In bad natural environment, the farmers can produce quality crops and people will get healthy foodby this proposed methodologyand make more profit.In real time treatme


Author(s):  
Ming-Chuan Chiu ◽  
Chien-De Tsai ◽  
Tung-Lung Li

Abstract A cyber-physical system (CPS) is one of the key technologies of industry 4.0. It is an integrated system that merges computing, sensors, and actuators, controlled by computer-based algorithms that integrate people and cyberspace. However, CPS performance is limited by its computational complexity. Finding a way to implement CPS with reduced complexity while incorporating more efficient diagnostics, forecasting, and equipment health management in a real-time performance remains a challenge. Therefore, the study proposes an integrative machine-learning method to reduce the computational complexity and to improve the applicability as a virtual subsystem in the CPS environment. This study utilizes random forest (RF) and a time-series deep-learning model based on the long short-term memory (LSTM) networking to achieve real-time monitoring and to enable the faster corrective adjustment of machines. We propose a method in which a fault detection alarm is triggered well before a machine fails, enabling shop-floor engineers to adjust its parameters or perform maintenance to mitigate the impact of its shutdown. As demonstrated in two empirical studies, the proposed method outperforms other times-series techniques. Accuracy reaches 80% or higher 3 h prior to real-time shutdown in the first case, and a significant improvement in the life of the product (281%) during a particular process appears in the second case. The proposed method can be applied to other complex systems to boost the efficiency of machine utilization and productivity.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2779
Author(s):  
Navjodh Singh Dhillon ◽  
Agustinus Sutandi ◽  
Manoj Vishwanath ◽  
Miranda M. Lim ◽  
Hung Cao ◽  
...  

Traumatic Brain Injury (TBI) is a common cause of death and disability. However, existing tools for TBI diagnosis are either subjective or require extensive clinical setup and expertise. The increasing affordability and reduction in the size of relatively high-performance computing systems combined with promising results from TBI related machine learning research make it possible to create compact and portable systems for early detection of TBI. This work describes a Raspberry Pi based portable, real-time data acquisition, and automated processing system that uses machine learning to efficiently identify TBI and automatically score sleep stages from a single-channel Electroencephalogram (EEG) signal. We discuss the design, implementation, and verification of the system that can digitize the EEG signal using an Analog to Digital Converter (ADC) and perform real-time signal classification to detect the presence of mild TBI (mTBI). We utilize Convolutional Neural Networks (CNN) and XGBoost based predictive models to evaluate the performance and demonstrate the versatility of the system to operate with multiple types of predictive models. We achieve a peak classification accuracy of more than 90% with a classification time of less than 1 s across 16–64 s epochs for TBI vs. control conditions. This work can enable the development of systems suitable for field use without requiring specialized medical equipment for early TBI detection applications and TBI research. Further, this work opens avenues to implement connected, real-time TBI related health and wellness monitoring systems.


Author(s):  
Junyi Wang ◽  
Qinggang Meng ◽  
Peng Shang ◽  
Mohamad Saada

This paper focuses on road surface real-time detection by using tripod dolly equipped with Raspberry Pi 3 B+, MPU 9250, which is convenient to collect road surface data and realize real-time road surface detection. Firstly, six kinds of road surfaces data are collected by utilizing Raspberry Pi 3 B+ and MPU 9250. Secondly, the classifiers can be obtained by adopting several machine learning algorithms, recurrent neural networks (RNN) and long short-term memory (LSTM) neural networks. Among the machine learning classifiers, gradient boosting decision tree has the highest accuracy rate of 97.92%, which improves by 29.52% compared with KNN with the lowest accuracy rate of 75.60%. The accuracy rate of LSTM neural networks is 95.31%, which improves by 2.79% compared with RNN with the accuracy rate of 92.52%. Finally, the classifiers are embedded into the Raspberry Pi to detect the road surface in real time, and the detection time is about one second. This road surface detection system could be used in wheeled robot-car and guiding the robot-car to move smoothly.


2016 ◽  
Vol 9 (2) ◽  
pp. 37-45 ◽  
Author(s):  
Sandip Kumar Roy ◽  
Preeta Sharan

Abstract. The world is facing an unprecedented problem in safeguarding 0.4 % of potable water, which is gradually depleting day-by-day. From a literature survey it has been observed that the refractive index (RI) of water changes with a change in salinity or total dissolved solids (TDS). In this paper we have proposed an automatic system that can be used for real-time evaluation of salinity or TDS in drinking water. A photonic crystal (PhC) based ring resonator sensor has been designed and simulated using the MEEP (MIT Electromagnetic Equation Propagation) tool and the finite difference time domain (FDTD) algorithm. The modelled and designed sensor is highly sensitive to the changes in the RI of a water sample. This work includes a real-time-based natural sequence follower, which is a machine learning algorithm of the naive Bayesian type, a sequence of statistical algorithms implemented in MATLAB with reference to training data to analyse the sample water. Further interfacing has been done using the Raspberry Pi device to provide an easy display to show the result of water analysis. The main advantage of the designed sensor with an interface is to check whether the salinity or TDS in drinking water is less than 1000 ppm or not. If it is greater than or equal to 2000 ppm, the display shows “High Salinity/TDS Observed”, and if ppm are less than or equal to 1000 ppm, then the display shows “Low salinity/TDS Observed”. The proposed sensor is highly sensitive and it can detect changes in TDS level because of the influence of any dissolved substance in water.


Sign in / Sign up

Export Citation Format

Share Document