Closed-loop direct torque control for switched reluctance drives

Author(s):  
Luo Jianwu ◽  
Zhan Qionghua ◽  
Xin Kai
2015 ◽  
Vol 9 (1) ◽  
pp. 600-609
Author(s):  
Xuande Ji ◽  
Daqing He ◽  
Yunwang Ge

For disadvantages of the large flux and torque ripple and current waveform distortion of Direct Torque Control (BASIC-DTC), the DTC scheme for induction motor based on torque angle closed-loop control was presented and the proposed scheme was realized with three methods of torque angle closed-loop control. The main characteristics of three methods of torque angle closed-loop control for the proposed scheme was analyzed, emphasizing their advantages and disadvantages. The performance of three methods of torque angle closed-loop control for the proposed scheme was studied in terms of flux and torque ripple, current waveform distortion and transient responses. Simulation results showed that the proposed scheme improves the performance of induction motor BASIC-DTC by combining low flux ripple, low torque ripple and low current waveform distortion’s characteristics with fast dynamics.


2020 ◽  
Vol 306 ◽  
pp. 04007
Author(s):  
Qianni Li ◽  
Aide Xu ◽  
Chaoyi Shang ◽  
Lepeng Huang

This paper proposes a novel deadbeat torque and flux control (DB-DTFC) to reduce torque ripple for switched reluctance motor (SRM). DB-DTFC combines the advantages of direct torque control (DTC) and space-vector modulation (SVM). DB-DTFC leads current vector control into DTC in order to find the equation between torque and current through deadbeat prediction theory i.e. a beat reaches a given point. In addition, the deadbeat calculation module here is similar to that of permanent magnet synchronous motor. Based on dq0 reference frame of SRM, the most suitable dq0 axis current of next moment corresponding to different torque errors is calculated and predicted. According to the calculated dq0 axis current, the optimal space voltage vectors can be selected to reduce torque ripple. In order to verify the effectiveness and correctness of the proposed scheme, DB-DTFC is verified and compared with the DTC-SVM by simulation.


Author(s):  
Reyad Abdelfadil ◽  
László Számel

The electrical drive systems utilized in Electric Vehicles (EVs) applications must be reliable and high performance. To providing these specifications, it is essential to design high-efficiency electric motors and develop high-performance controllers. This study introduces direct torque control of Switched Reluctance Motor (SRM) for electric vehicle applications using Model Predictive Control (MPC) technique. The direct torque control using MPC is proposed to maintain the motor torque and motor speed to tracking desired signals with a satisfactory response. In this study, the MPC algorithm was programmed in C- language, and the simulation tests were performed using a non-linear model of 6/4 - 60 kW SRM that is fed with the symmetrical converter. The proposed controller was tested under different load conditions to verify the robustness of the controller, as well as at variable speeds to investigate the tracking performance. Thanks to the proposed method, the SRM torque ripples, stator copper losses, and average switching frequency of the power converter can reduce effectively due to applying a cost function that combines multiple objectives. The obtained outcomes show the effectiveness of the suggested approach compared to conventional direct torque control techniques.


2012 ◽  
Vol 203 ◽  
pp. 226-230
Author(s):  
Peng Chen ◽  
Jian Yang Zhai ◽  
Zheng Zhu

Combining with some fuzzy of the direct torque control and the fuzzy control which is often used in the traditional AC motor control,we put forward a direct torque control theory based on the fuzzy rule. The brushless doubly-fed machine(BDFM) closed-loop control system with the direct torque control based on the fuzzy rule is simulated by using of the Matlab/Simulink software, and the simulation results show that the closed-loop control method is correct and effective.


Author(s):  
Alfeu J. Sguarezi Filho ◽  
E. Ruppert Filho

This paper proposes a design and tuning method for a complex gain controller, based on the three-phase induction motor mathematical model complex transfer function to be used in the direct torque control at low speed which is a problem so far. The design and tuning of the complex gain is done by using the closed loop system frequency-response function. Experimental results are presented to validate the controller and operation at low speed is also explored.


Sign in / Sign up

Export Citation Format

Share Document