Failure Localization Method in Open Mode Failure Analysis of Advanced Package

Author(s):  
Xiaowei Xu ◽  
Wenfeng Huang ◽  
Yuan Chen
Author(s):  
I. Österreicher ◽  
S. Eckl ◽  
B. Tippelt ◽  
S. Döring ◽  
R. Prang ◽  
...  

Abstract Depending on the field of application the ICs have to meet requirements that differ strongly from product to product, although they may be manufactured with similar technologies. In this paper a study of a failure mode is presented that occurs on chips which have passed all functional tests. Small differences in current consumption depending on the state of an applied pattern (delta Iddq measurement) are analyzed, although these differences are clearly within the usual specs. The challenge to apply the existing failure analysis techniques to these new fail modes is explained. The complete analysis flow from electrical test and Global Failure Localization to visualization is shown. The failure is localized by means of photon emission microscopy, further analyzed by Atomic Force Probing, and then visualized by SEM and TEM imaging.


Author(s):  
J.G. van Hassel ◽  
Xiao-Mei Zhang

Abstract Failures induced in the silicon substrate by process marginalities or process mistakes need continuous attention in new as well as established technologies. Several case studies showing implant related defects and dislocations in silicon will be discussed. Depending on the electrical characteristics of the failure the localization method has to be chosen. The emphasis of the discussion will be on the importance of the right choice for further physical de-processing to reveal the defect. This paper focuses on the localization method, the de- processing technique and the use of Wright etch for subsequent TEM preparation.


Author(s):  
R. Rosenkranz ◽  
W. Werner

Abstract In many cases of failure localization, passive voltage contrast (PVC) localization method does not work, because it is not possible to charge up conducting structures which supposed to be dark in the SEM and FIB images. The reason for this is leakage currents. In this article, the authors show how they succeeded in overcoming these difficulties by the application of the active voltage contrast (AVC) method as it was described as biased voltage contrast by Campbell and Soden. They identified three main cases where the PVC didn't work but where they succeeded in failure localization with the AVC method. This is illustrated with the use of two case studies. Compared to the optical beam based methods the resolution is much better so a single failing contact of e.g. 70 nm technology can clearly be identified which cannot be done by TIVA or OBIRCH.


Author(s):  
P. Egger ◽  
C. Burmer

Abstract The area of embedded SRAMs in advanced logic ICs is increasing more and more. On the other hand smaller structure sizes and an increasing number of metal layers make conventional failure localization by using emission microscopy or liquid crystal inefficient. In this paper a SRAM failure analysis strategy will be presented independent on layout and technology.


Author(s):  
Coswin Lin ◽  
Homy Ou ◽  
Chia-Hsing Chao ◽  
Shey-Shi Lu

Abstract Scanning Capacitance Microscopy (SCM) has been extensively used for identifying doping issues in semiconductor failure analysis. In this paper, the root causes of two recent problems -- bipolar beta loss and CMOS power leakage -- were verified using SCM images. Another localization method, layer-by-layer circuit repair with IROBIRCH detection, was also utilized to locate possible defects. The resulting failure mechanism for bipolar beta loss is illustrated with a schematic cross section, which shows the leakage path from the emitter to the base. In the case of CMOS power leakage, the abnormal implantation of the Pwell region was identified with the Plane view SCM image.


Sign in / Sign up

Export Citation Format

Share Document