Default mode network and attention network in unconscious processing

Author(s):  
Ying Gao
2020 ◽  
Vol 6 (11) ◽  
pp. eaaz0087 ◽  
Author(s):  
Zirui Huang ◽  
Jun Zhang ◽  
Jinsong Wu ◽  
George A. Mashour ◽  
Anthony G. Hudetz

The ongoing stream of human consciousness relies on two distinct cortical systems, the default mode network and the dorsal attention network, which alternate their activity in an anticorrelated manner. We examined how the two systems are regulated in the conscious brain and how they are disrupted when consciousness is diminished. We provide evidence for a “temporal circuit” characterized by a set of trajectories along which dynamic brain activity occurs. We demonstrate that the transitions between default mode and dorsal attention networks are embedded in this temporal circuit, in which a balanced reciprocal accessibility of brain states is characteristic of consciousness. Conversely, isolation of the default mode and dorsal attention networks from the temporal circuit is associated with unresponsiveness of diverse etiologies. These findings advance the foundational understanding of the functional role of anticorrelated systems in consciousness.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Xuan Bu ◽  
Kaili Liang ◽  
Qingxia Lin ◽  
Yingxue Gao ◽  
Andan Qian ◽  
...  

Abstract Attention-deficit/hyperactivity disorder has been identified to involve the impairment of large-scale functional networks within grey matter, and recent studies have suggested that white matter, which also encodes neural activity, can manifest intrinsic functional organization similar to that of grey matter. However, the alterations in white matter functional networks in attention-deficit/hyperactivity disorder remain unknown. We recruited a total of 99 children, including 66 drug-naive patients and 33 typically developing controls aged from 6 to 14, to characterize the alterations in functional networks within white matter in drug-naive children with attention-deficit/hyperactivity disorder. Using clustering analysis, resting-state functional MRI data in the white matter were parsed into different networks. Intrinsic activity within each network and connectivity between networks and the associations between network activity strength and clinical symptoms were assessed. We identified eight distinct white matter functional networks: the default mode network, the somatomotor network, the dorsal attention network, the ventral attention network, the visual network, the deep frontoparietal network, the deep frontal network and the inferior corticospinal-posterior cerebellum network. The default mode, somatomotor, dorsal attention and ventral attention networks showed lower spontaneous neural activity in patients. In particular, the default mode network and the somatomotor network largely showed higher connectivity with other networks, which correlated with more severe hyperactive behaviour, while the dorsal and ventral attention networks mainly had lower connectivity with other networks, which correlated with poor attention performance. In conclusion, there are two distinct patterns of white matter functional networks in children with attention-deficit/hyperactivity disorder, with one being the hyperactivity-related hot networks including default mode network and somatomotor network and the other being inattention-related cold networks including dorsal attention and ventral attention network. These results extended upon our understanding of brain functional networks in attention-deficit/hyperactivity disorder from the perspective of white matter dysfunction.


2021 ◽  
Author(s):  
Valeria Onofrj ◽  
Antonio Maria Chiarelli ◽  
Richard Wise ◽  
Cesare Colosimo ◽  
Massimo Caulo

Abstract The Salience Network (SN), Ventral Attention Network (VAN), Dorsal Attention Network (DAN) and Default Mode Network (DMN) have shown significant interactions and overlapping functions in bottom-up and top-down mechanisms of attention. In the present study we tested if the SN, VAN, DAN and DMN connectivity can infer the gestational age (GA) at birth in a study group of 88 healthy neonates with GA at birth ranging from 28 to 40 weeks. We also ascertained whether the connectivity within each of the SN, VAN, DAN and DMN is able to infer the average functional connectivity of the others. The ability to infer GA at birth or another network's connectivity was evaluated using a multi-variate data-driven framework. A mediation analysis was performed in order to estimate the transmittance of change of a network’s functional connectivity (FC) over another mediated by the GA.The VAN, DAN and the DMN infer the GA at birth (p<0.05). The SN, DMN and VAN were able to infer the average connectivity over the other networks (p<0.05). Mediation analysis between VAN’s and DAN’s inference on GA found reciprocal transmittance of change of VAN’s and DAN’s connectivity (p<0.05). Our findings suggest that the VAN has a prominent role in the bottom-up salience detection in early infancy and that the role of the VAN and the SN may overlap in the bottom-up control of attention.


2019 ◽  
Author(s):  
Max Michael Owens ◽  
Dekang Yuan ◽  
Sage Hahn ◽  
Matthew Albaugh ◽  
Nicholas Allgaier ◽  
...  

The default mode network (DMN) and dorsal attention network (DAN) demonstrate an intrinsic “anticorrelation” in healthy adults, which is thought to represent the functional segregation between internally and externally directed thought. Reduced segregation of these networks has been proposed as a mechanism for cognitive deficits that occurs in many psychiatric disorders, but this association has rarely been tested in pre-adolescent children. The current analysis used data from the Adolescent Brain Cognitive Development study to examine the relationship between the strength of DMN/DAN anticorrelation and psychiatric symptoms in the largest sample to-date of 9-10-year-old children (N = 6543). The relationship of DMN/DAN anticorrelation to a battery of neuropsychological tests was also assessed. DMN/DAN anticorrelation was robustly linked to attention problems, as well as age, sex, and socioeconomic factors. Other psychiatric correlates identified in prior reports were not robustly linked to DMN/DAN anticorrelation after controlling for demographic covariates. Among neuropsychological measures, the clearest correlates of DMN/DAN anticorrelation was the Card Sort task of executive function and cognitive flexibility and the NIH Toolbox Total Cognitive Score, although these did not survive correction for socioeconomic factors. These findings indicate a complicated relationship between DMN/DAN anticorrelation and demographics, neuropsychological function, and psychiatric problems.


2020 ◽  
Vol 30 (12) ◽  
pp. 6083-6096
Author(s):  
Max M Owens ◽  
DeKang Yuan ◽  
Sage Hahn ◽  
Matthew Albaugh ◽  
Nicholas Allgaier ◽  
...  

Abstract The default mode network (DMN) and dorsal attention network (DAN) demonstrate an intrinsic “anticorrelation” in healthy adults, which is thought to represent the functional segregation between internally and externally directed thought. Reduced segregation of these networks has been proposed as a mechanism for cognitive deficits that occurs in many psychiatric disorders, but this association has rarely been tested in pre-adolescent children. The current analysis used data from the Adolescent Brain Cognitive Development study to examine the relationship between the strength of DMN/DAN anticorrelation and psychiatric symptoms in the largest sample to date of 9- to 10-year-old children (N = 6543). The relationship of DMN/DAN anticorrelation to a battery of neuropsychological tests was also assessed. DMN/DAN anticorrelation was robustly linked to attention problems, as well as age, sex, and socioeconomic factors. Other psychiatric correlates identified in prior reports were not robustly linked to DMN/DAN anticorrelation after controlling for demographic covariates. Among neuropsychological measures, the clearest correlates of DMN/DAN anticorrelation were the Card Sort task of executive function and cognitive flexibility and the NIH Toolbox Total Cognitive Score, although these did not survive correction for socioeconomic factors. These findings indicate a complicated relationship between DMN/DAN anticorrelation and demographics, neuropsychological function, and psychiatric problems.


2017 ◽  
Vol 13 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Hui Juan Chen ◽  
Jiqiu Wen ◽  
Rongfeng Qi ◽  
Jianhui Zhong ◽  
U. Joseph Schoepf ◽  
...  

Background and objectivesCognition in ESRD may be improved by kidney transplantation, but mechanisms are unclear. We explored patterns of resting-state networks with resting-state functional magnetic resonance imaging among patients with ESRD before and after kidney transplantation.Design, setting, participants, & measurementsThirty-seven patients with ESRD scheduled for kidney transplantation and 22 age-, sex-, and education-matched healthy subjects underwent resting-state functional magnetic resonance imaging. Patients were imaged before and 1 and 6 months after kidney transplantation. Functional connectivity of seven resting-state subnetworks was evaluated: default mode network, dorsal attention network, central executive network, self-referential network, sensorimotor network, visual network, and auditory network. Mixed effects models tested associations of ESRD, kidney transplantation, and neuropsychological measurements with functional connectivity.ResultsCompared with controls, pretransplant patients showed abnormal functional connectivity in six subnetworks. Compared with pretransplant patients, increased functional connectivity was observed in the default mode network, the dorsal attention network, the central executive network, the sensorimotor network, the auditory network, and the visual network 1 and 6 months after kidney transplantation (P=0.01). Six months after kidney transplantation, no significant difference in functional connectivity was observed for the dorsal attention network, the central executive network, the auditory network, or the visual network between patients and controls. Default mode network and sensorimotor network remained significantly different from those in controls when assessed 6 months after kidney transplantation. A relationship between functional connectivity and neuropsychological measurements was found in specific brain regions of some brain networks.ConclusionsThe recovery patterns of resting-state subnetworks vary after kidney transplantation. The dorsal attention network, the central executive network, the auditory network, and the visual network recovered to normal levels, whereas the default mode network and the sensorimotor network did not recover completely 6 months after kidney transplantation. Neural resting-state functional connectivity was lower among patients with ESRD compared with control subjects, but it significantly improved with kidney transplantation. Resting-state subnetworks exhibited variable recovery, in some cases to levels that were no longer significantly different from those of normal controls.


2021 ◽  
Vol 11 (5) ◽  
pp. 566
Author(s):  
Kathryn J. Devaney ◽  
Emily J. Levin ◽  
Vaibhav Tripathi ◽  
James P. Higgins ◽  
Sara W. Lazar ◽  
...  

Meditation experience has previously been shown to improve performance on behavioral assessments of attention, but the neural bases of this improvement are unknown. Two prominent, strongly competing networks exist in the human cortex: a dorsal attention network, that is activated during focused attention, and a default mode network, that is suppressed during attentionally demanding tasks. Prior studies suggest that strong anti-correlations between these networks indicate good brain health. In addition, a third network, a ventral attention network, serves as a “circuit-breaker” that transiently disrupts and redirects focused attention to permit salient stimuli to capture attention. Here, we used functional magnetic resonance imaging to contrast cortical network activation between experienced focused attention Vipassana meditators and matched controls. Participants performed two attention tasks during scanning: a sustained attention task and an attention-capture task. Meditators demonstrated increased magnitude of differential activation in the dorsal attention vs. default mode network in a sustained attention task, relative to controls. In contrast, there were no evident attention network differences between meditators and controls in an attentional reorienting paradigm. A resting state functional connectivity analysis revealed a greater magnitude of anticorrelation between dorsal attention and default mode networks in the meditators as compared to both our local control group and a n = 168 Human Connectome Project dataset. These results demonstrate, with both task- and rest-based fMRI data, increased stability in sustained attention processes without an associated attentional capture cost in meditators. Task and resting-state results, which revealed stronger anticorrelations between dorsal attention and default mode networks in experienced mediators than in controls, are consistent with a brain health benefit of long-term meditation practice.


2019 ◽  
Vol 13 ◽  
pp. 117906951983396 ◽  
Author(s):  
Michael N Dretsch ◽  
D Rangaprakash ◽  
Jeffrey S Katz ◽  
Thomas A Daniel ◽  
Adam M Goodman ◽  
...  

Background: There is a significant number of military personnel with a history of mild traumatic brain injury (mTBI) who suffer from comorbid posttraumatic stress symptoms (PTS). Although there is evidence of disruptions of the default mode network (DMN) associated with PTS and mTBI, previous studies have only studied static connectivity while ignoring temporal variability of connectivity. Objective: To assess DMN disrupted or dysregulated neurocircuitry, cognitive functioning, and psychological health of active-duty military with mTBI and PTS. Method: U.S. Army soldiers with PTS (n = 14), mTBI + PTS (n = 25), and healthy controls (n = 21) voluntarily completed a cognitive and symptom battery. In addition, participants had magnetic resonance imaging (MRI) to assess both static functional connectivity (SFC) and variance of dynamic functional connectivity (vDFC) of the DMN. Results: Both the PTS and mTBI + PTS groups had significant symptoms, but only the comorbid group had significant decrements in cognitive functioning. Both groups showed less stable and disrupted neural signatures of the DMN, mainly constituting the cingulate-frontal-temporal-parietal attention network. Specifically, the PTS group showed a combination of both reduced contralateral strength and reduced unilateral variability of frontal- cingulate- temporal connectivities, as well as increased variability of frontal- parietal connectivities. The mTBI + PTS group had fewer abnormal connectives than the PTS group, all of which included reduced strength of frontal- temporal regions and reduced variability frontal- cingulate- temporal regions. Greater SFC and vDFC connectivity of the left dorsolateral prefrontal cortex (dlPFC) ↔ precuneus was associated with higher cognitive scores and lower symptom scores. Conclusions: Findings suggest that individuals with PTS and mTBI + PTS have a propensity for accentuated generation of thoughts, feelings, sensations, and/or images while in a resting state. Compared with controls, only the PTS group was associated with accentuated variability of the frontal- parietal attention network. While there were no significant differences in DMN connectivity strength between the mTBI + PTS and PTS groups, variability of connectivity was able to distinguish them.


Brain ◽  
2020 ◽  
Author(s):  
Emma-Jane Mallas ◽  
Sara De Simoni ◽  
Gregory Scott ◽  
Amy E Jolly ◽  
Adam Hampshire ◽  
...  

Abstract Memory impairment is a common, disabling effect of traumatic brain injury. In healthy individuals, successful memory encoding is associated with activation of the dorsal attention network as well as suppression of the default mode network. Here, in traumatic brain injury patients we examined whether: (i) impairments in memory encoding are associated with abnormal brain activation in these networks; (ii) whether changes in this brain activity predict subsequent memory retrieval; and (iii) whether abnormal white matter integrity underpinning functional networks is associated with impaired subsequent memory. Thirty-five patients with moderate-severe traumatic brain injury aged 23–65 years (74% males) in the post-acute/chronic phase after injury and 16 healthy control subjects underwent functional MRI during performance of an abstract image memory encoding task. Diffusion tensor imaging was used to assess structural abnormalities across patient groups compared to 28 age-matched healthy controls. Successful memory encoding across all participants was associated with activation of the dorsal attention network, the ventral visual stream and medial temporal lobes. Decreased activation was seen in the default mode network. Patients with preserved episodic memory demonstrated increased activation in areas of the dorsal attention network. Patients with impaired memory showed increased left anterior prefrontal activity. White matter microstructure underpinning connectivity between core nodes of the encoding networks was significantly reduced in patients with memory impairment. Our results show for the first time that patients with impaired episodic memory show abnormal activation of key nodes within the dorsal attention network and regions regulating default mode network activity during encoding. Successful encoding was associated with an opposite direction of signal change between patients with and without memory impairment, suggesting that memory encoding mechanisms could be fundamentally altered in this population. We demonstrate a clear relationship between functional networks activated during encoding and underlying abnormalities within the structural connectome in patients with memory impairment. We suggest that encoding failures in this group are likely due to failed control of goal-directed attentional resources.


Sign in / Sign up

Export Citation Format

Share Document