Portable Electronic Capacitance Meter using Resonance Method for Lard Capacitance Measurement

Author(s):  
W.S. Mada Sanjaya ◽  
Akhmad Roziqin ◽  
Dyah Anggraeni ◽  
Madinatul Munawwaroh ◽  
Sinta Fatmala Dewi ◽  
...  
2012 ◽  
Vol 31 (4-5) ◽  
pp. 459-463 ◽  
Author(s):  
Sohei Sukenaga ◽  
Kakeru Kusada ◽  
Noritaka Saito ◽  
Kunihiko Nakashima

AbstractThe effect of shear stress on the crystallization behavior of molten 50CaO-50SiO2 (mol%) slag was investigated by in-situ measurements of its electrical capacitance in wide temperature range including supercooled region. It is well known that the electrical capacitance of liquids should be generally much higher than that of solids because of the differences in their respective polarization mechanisms. The difference was employed as a sensitive indicator of the crystallization of molten silicates in an experimental furnace equipped with an electrical-capacitance measurement system. The system comprised a Pt-based alloy crucible and a rotating rod that allow us to evaluate the effect of shear stress, both connected to a capacitance meter (LCR meter).As expected, at a particular temperature, the electrical capacitance of the molten calcium silicate abruptly decreased by roughly three orders of magnitude, which clearly indicated crystallization confirmed by corresponding microstructural analyses. It was also found that, for the rotating-rod measurements (with shear stress), the temperatures at which the capacitance abruptly dropped were higher than that without the shear stress. This suggests that the agitation effect by the rotating-rod accelerates the crystallization of molten calcium silicate.


2020 ◽  
pp. 49-56
Author(s):  
Vitaly V. Volkov ◽  
Michael A. Suslin ◽  
Jamil U. Dumbolov

One of the conditions for ensuring the safety of air transport operation is the quality of aviation fuel refueled in aircraft. Fuel quality control is a multi-parameter task that includes monitoring the free moisture content. Regulatory documents establish the content of free water no more than 0.0015% by weight. It is developed a direct electrometric microwave resonance method for controlling free moisture in aviation fuels, which consists in changing the shape of the water drops by pressing them on a solid surface inside a cylindrical cavity resonator. This can dramatically increase dielectric losses. Analytical and experimental analysis of the proposed method is carried out. The control range from 0,5 to 30 μl of absolute volume of moisture in aviation fuels with a maximum error of not morethan 25 % is justified. The sensitivity of the proposed method for monitoring microwave losses in free moisture drops transformed into a thin layer by pressing is an order of magnitude greater than the sensitivity of the method for monitoring microwave losses in moisture drops on a solid surface in a resonator. The proposed method can be used as a basis for the development of devices for monitoring the free moisture of aviation fuels in the conditions of the airfield and laboratory. The direction of development of the method is shown.


2020 ◽  
pp. 44-49
Author(s):  
I. N. Pavlov

Two optical methods, namely surface plasmon resonance imaging and frustrated total internal reflection, are described in the paper in terms of comparing their sensitivity to change of refractive index of a thin boundary layer of an investigated medium. It is shown that, despite the fact that the theoretically calculated sensitivity is higher for the frustrated total internal reflection method, and the fact that usually in practice the surface plasmon resonance method, on the contrary, is considered more sensitive, under the same experimental conditions both methods show a similar result.


2014 ◽  
Vol E97.C (11) ◽  
pp. 1117-1123 ◽  
Author(s):  
Katsuhiro TSUJI ◽  
Kazuo TERADA ◽  
Ryota KIKUCHI

2021 ◽  
Vol 11 (2) ◽  
pp. 22
Author(s):  
Umberto Ferlito ◽  
Alfio Dario Grasso ◽  
Michele Vaiana ◽  
Giuseppe Bruno

Charge-Based Capacitance Measurement (CBCM) technique is a simple but effective technique for measuring capacitance values down to the attofarad level. However, when adopted for fully on-chip implementation, this technique suffers output offset caused by mismatches and process variations. This paper introduces a novel method that compensates the offset of a fully integrated differential CBCM electronic front-end. After a detailed theoretical analysis of the differential CBCM topology, we present and discuss a modified architecture that compensates mismatches and increases robustness against mismatches and process variations. The proposed circuit has been simulated using a standard 130-nm technology and shows a sensitivity of 1.3 mV/aF and a 20× reduction of the standard deviation of the differential output voltage as compared to the traditional solution.


1997 ◽  
Vol 11 (22) ◽  
pp. 2593-2619 ◽  
Author(s):  
Sadao Takaoka ◽  
Kenichi Oto ◽  
Kazuo Murase

The quantum Hall effect for the GaAs/AlGaAs heterostrcture is investigated by an ac capacitance measurement between the two-dimensional electron system (2DES) and the gate on GaAs/AlGaAs. The capacitance minima at the quantum Hall plateaus are mainly determined not by the 2DES area under the gate but by the edge length of 2DES. There exists the high conductive region due to the edge states along the 2DES boundary, when the bulk conductivity σxx is small enough at low temperatures and high magnetic fields. From the temperature and frequency dependence of the capacitance minima, it is found that the measured capacitance consists of the contribution from the edge states and that of the bulk state, which is treated as a distributed circuit of a resistive plate with the conductivity σxx. The evaluated width of edge states from the capacitance is much larger than the magnetic length and the cyclotron radius expected from the one-electron picture. This wide width of edge states can be explained by the compressible-incompressible strip model, in which the screening effect is taken into account. Further the bulk conductivity of less than 10-12 S (S=1/Ω) is measured by the capacitance of the Corbino geometry sample, where the edge states are absent and the capacitance is determined by only σxx in this geometry. The localization of the bulk state is investigated by the obtained σxx.


Sign in / Sign up

Export Citation Format

Share Document