Review on exhaled volatile organic compounds from lung cancer and advances of E-nose as non-invasive detection method

Author(s):  
R. Thriumani ◽  
A. Zakaria ◽  
M. I. Omar ◽  
A. H. Adom ◽  
A. Y. M. Sharaff ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Ileana Andreea Ratiu ◽  
Tomasz Ligor ◽  
Victor Bocos-Bintintan ◽  
Chris A Mayhew ◽  
Bogusław Buszewski

Lung cancer, chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases that have risen worldwide, posing a major public health issue, encompassing not only physical and psychological morbidity and mortality, but also incurring significant societal costs. The leading cause of death worldwide by cancer is that of the lung, which, in large part, is a result of the disease often not being detected until a late stage. Although COPD and asthma are conditions with considerably lower mortality, they are extremely distressful to people and involve high healthcare overheads. Moreover, for these diseases, diagnostic methods are not only costly but are also invasive, thereby adding to people’s stress. It has been appreciated for many decades that the analysis of trace volatile organic compounds (VOCs) in exhaled breath could potentially provide cheaper, rapid, and non-invasive screening procedures to diagnose and monitor the above diseases of the lung. However, after decades of research associated with breath biomarker discovery, no breath VOC tests are clinically available. Reasons for this include the little consensus as to which breath volatiles (or pattern of volatiles) can be used to discriminate people with lung diseases, and our limited understanding of the biological origin of the identified VOCs. Lung disease diagnosis using breath VOCs is challenging. Nevertheless, the numerous studies of breath volatiles and lung disease provide guidance as to what volatiles need further investigation for use in differential diagnosis, highlight the urgent need for non-invasive clinical breath tests, illustrate the way forward for future studies, and provide significant guidance to achieve the goal of developing non-invasive diagnostic tests for lung disease. This review provides an overview of these issues from evaluating key studies that have been undertaken in the years 2010–2019, in order to present objective and comprehensive updated information that presents the progress that has been made in this field. The potential of this approach is highlighted, while strengths, weaknesses, opportunities, and threats are discussed. This review will be of interest to chemists, biologists, medical doctors and researchers involved in the development of analytical instruments for breath diagnosis.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 584
Author(s):  
Kelvin de Jesús Beleño-Sáenz ◽  
Juan Martín Cáceres-Tarazona ◽  
Pauline Nol ◽  
Aylen Lisset Jaimes-Mogollón ◽  
Oscar Eduardo Gualdrón-Guerrero ◽  
...  

More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Doñana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12–24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.


2020 ◽  
Vol 56 (12) ◽  
pp. 801-805
Author(s):  
Maria Ángeles Muñoz-Lucas ◽  
Javier Jareño-Esteban ◽  
Carlos Gutiérrez-Ortega ◽  
Pablo López-Guijarro ◽  
Luis Collado-Yurrita ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 317
Author(s):  
Michalis Koureas ◽  
Paraskevi Kirgou ◽  
Grigoris Amoutzias ◽  
Christos Hadjichristodoulou ◽  
Konstantinos Gourgoulianis ◽  
...  

The aim of the present study was to investigate the ability of breath analysis to distinguish lung cancer (LC) patients from patients with other respiratory diseases and healthy people. The population sample consisted of 51 patients with confirmed LC, 38 patients with pathological computed tomography (CT) findings not diagnosed with LC, and 53 healthy controls. The concentrations of 19 volatile organic compounds (VOCs) were quantified in the exhaled breath of study participants by solid phase microextraction (SPME) of the VOCs and subsequent gas chromatography-mass spectrometry (GC-MS) analysis. Kruskal–Wallis and Mann–Whitney tests were used to identify significant differences between subgroups. Machine learning methods were used to determine the discriminant power of the method. Several compounds were found to differ significantly between LC patients and healthy controls. Strong associations were identified for 2-propanol, 1-propanol, toluene, ethylbenzene, and styrene (p-values < 0.001–0.006). These associations remained significant when ambient air concentrations were subtracted from breath concentrations. VOC levels were found to be affected by ambient air concentrations and a few by smoking status. The random forest machine learning algorithm achieved a correct classification of patients of 88.5% (area under the curve—AUC 0.94). However, none of the methods used achieved adequate discrimination between LC patients and patients with abnormal computed tomography (CT) findings. Biomarker sets, consisting mainly of the exogenous monoaromatic compounds and 1- and 2- propanol, adequately discriminated LC patients from healthy controls. The breath concentrations of these compounds may reflect the alterations in patient’s physiological and biochemical status and perhaps can be used as probes for the investigation of these statuses or normalization of patient-related factors in breath analysis.


Nanoscale ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 2476-2483 ◽  
Author(s):  
E. Kovalska ◽  
P. Lesongeur ◽  
B. T. Hogan ◽  
A. Baldycheva

Multilayer graphene can be used to detect volatile organic compounds, with enhanced selectivity and sensitivity through surface patterning.


2014 ◽  
Vol 60 (1) ◽  
pp. S415
Author(s):  
K.E. Pijls ◽  
A. Smolinska ◽  
D.M.A.E. Jonkers ◽  
E.J.C. Moonen ◽  
J.W. Dallinga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document