Recent developments in wireless hardware design, modeling, and analysis for industrial applications

Author(s):  
Michael S. Pukish ◽  
Parameshwaran Gnanachchelvi ◽  
Xing Wu
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 536
Author(s):  
Mosab Kaseem ◽  
Karna Ramachandraiah ◽  
Shakhawat Hossain ◽  
Burak Dikici

This review presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments. In this work, the main fabrication approaches including co-precipitation, in situ hydrothermal, and an anion exchange reaction are outlined. The unique structure of LDH nanocontainers enables them to intercalate several corrosion inhibitors and release them when required under the action of corrosion-relevant triggers. The influences of different variables, such as type of cations, the concentration of salts, pH, and temperature, immersion time during the formation of LDH/anodic film composites, on the electrochemical response are also highlighted. The correlation between the dissolution rate of PEO coating and the growth rate of the LDH film was discussed. The challenges and future development strategies of LDH/anodic films are also highlighted in terms of industrial applications of these materials.


Author(s):  
Mazmul Hussain ◽  
Nargis Khan

The variable nature of the thermal conductivity of nanofluid with respect to temperature plays an important role in many engineering and industrial applications including solar collectors and thermoelectricity. Thus, the foremost motivation of this article is to investigate the effects of thermal conductivity and electric conductivity due to variable temperature on the flow of Williamson nanofluid. The flow is considered between two stretchable rotating disks. The mathematical modeling and analysis have been made in the presence of magnetohydrodynamic and thermal radiation. The governing differential equations of the problem are transformed into non-dimensional differential equations by using similarity transformations. The transformed differential equations are thus solved by a finite difference method. The behaviors of velocity, temperature and concentration profiles due to various parameters are discussed. For magnetic parameter, the radial and tangential velocities have showed decreasing behavior, while converse behavior is observed for axial velocity. The temperature profile shows increasing behavior due to an increase in the Weissenberg number, heat generation parameter and Eckert number, while it declines by increasing electric conductivity parameter. The nanoparticle concentration profile declines due to an increase in the Lewis number and Reynolds number.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-35
Author(s):  
Abhishek Hazra ◽  
Mainak Adhikari ◽  
Tarachand Amgoth ◽  
Satish Narayana Srirama

In the era of Industry 4.0, the Internet-of-Things (IoT) performs the driving position analogous to the initial industrial metamorphosis. IoT affords the potential to couple machine-to-machine intercommunication and real-time information-gathering within the industry domain. Hence, the enactment of IoT in the industry magnifies effective optimization, authority, and data-driven judgment. However, this field undergoes several interoperable issues, including large numbers of heterogeneous IoT gadgets, tools, software, sensing, and processing components, joining through the Internet, despite the deficiency of communication protocols and standards. Recently, various interoperable protocols, platforms, standards, and technologies are enhanced and altered according to the specifications of the applicability in industrial applications. However, there are no recent survey papers that primarily examine various interoperability issues that Industrial IoT (IIoT) faces. In this review, we investigate the conventional and recent developments of relevant state-of-the-art IIoT technologies, frameworks, and solutions for facilitating interoperability between different IIoT components. We also discuss several interoperable IIoT standards, protocols, and models for digitizing the industrial revolution. Finally, we conclude this survey with an inherent discussion of open challenges and directions for future research.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2118 ◽  
Author(s):  
Anna J. Simon ◽  
Andrew D. Ellington

Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment.


1991 ◽  
Vol 44 (3) ◽  
pp. 109-117 ◽  
Author(s):  
R. L. Huston

A review of recent developments in multibody dynamics modeling and analysis is presented. Multibody dynamics is one of the fastest growing fields of applied mechanics. Multibody systems are increasingly being employed as models of physical systems such as robots, mechanisms, chains, cables, space structures, and biodynamic systems. Research activity in multibody dynamics has stimulated research in a number of subfields including formulation methods, system modeling, numerical procedures, and graphical representations. These are also discussed and reviewed.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M. Kuddus ◽  
P. Singh ◽  
G. Thomas ◽  
Awdah Al-Hazimi

An extensive range of pigments including phycobiliproteins are present in algae. C-phycocyanin (C-PC), a phycobiliprotein, is one of the key pigments ofSpirulina, a microalgae used in many countries as a dietary supplement. Algal pigments have massive commercial value as natural colorants in nutraceutical, cosmetics, and pharmaceutical industries, besides their health benefits. At present, increasing awareness of harmful effects of synthetic compounds and inclination of community towards the usage of natural products have led to the exploitation of microalgae as a source of natural pigments/colors. This review describes recent findings about the sources and production of C-PC, with emphasis on specific techniques for extraction and purification, along with potential industrial applications in diagnostics, foods, cosmetics, and pharmaceutical industries.


Author(s):  
James C. Adams

Industrial aeroderivative gas turbines are becoming increasingly popular for use in both on-shore and off-shore installations. The characteristics of these machines — high efficiency in simple cycle operation, small size, and light weight — make them ideal for industrial applications. As the aeroderivative gas turbine has become more widely used, the need for more reliable monitoring methods has become increasingly apparent. Traditional velocity transducer based seismic monitoring systems have had several shortcomings when applied to aeroderivative gas turbines. One of these problems was nuisance alarms due to increasing transducer noise output. Another was not detecting increasing casing vibration because of transducer deterioration. Overcoming these problems has required advances in transducer technology as well as changes in signal processing techniques. This paper describes the technology and techniques used in new seismic vibration monitoring systems.


1999 ◽  
Vol 26 (4) ◽  
pp. 402-424 ◽  
Author(s):  
Hasnaa Jorio ◽  
Michèle Heitz

During several decades, there have been numerous studies and attempts in the field of the treatment of volatile organic solvent contaminated air, with the aim of finding a more efficient and less expensive process. In parallel with the traditional air treatment technologies, biological processes have emerged in recent years. Biofiltration appears to be a particularly preferred path due to its efficiency, its environmental aspects, and its lower costs. In this paper, the biofiltration technology is positioned in relation to conventional techniques and other biological air treatments. Subsequently, after a short historical account of biofiltration, the focus is put on the main objective of this literature review, presenting the current knowledge about the basic principles of the process, its applicability, operational conditions that influence performance and reliability of this process, and recent developments in mathematical biofilter modeling. Finally, industrial applications and biofiltration processing costs are briefly discussed.Key words: biofilter, VOC, biodegradation, modeling, kinetics, humidity, temperature, pH, nutrients, oxygen.[Journal translation]


Sensors ◽  
2015 ◽  
Vol 15 (11) ◽  
pp. 28665-28689 ◽  
Author(s):  
Lisa Jogschies ◽  
Daniel Klaas ◽  
Rahel Kruppe ◽  
Johannes Rittinger ◽  
Piriya Taptimthong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document