Sub-Terahertz Wideband Array on Low-cost Organic Substrate

Author(s):  
Alfredo Gonzalez ◽  
John L. Volakis ◽  
Elias A. Alwan
Author(s):  
Aimeric Bisognin ◽  
Ana Arboleya ◽  
Diane Titz ◽  
Romain Pilard ◽  
Daniel Gloria ◽  
...  

2010 ◽  
Vol 67 (6) ◽  
pp. 727-730 ◽  
Author(s):  
Leonardo Oliveira Medici ◽  
Hermes Soares da Rocha ◽  
Daniel Fonseca de Carvalho ◽  
Carlos Pimentel ◽  
Ricardo Antunes Azevedo

Despite the massive demand of water for plant irrigation, there are few devices being used in the automation of this process in agriculture. This work evaluates a simple controller to water plants automatically that can be set up with low cost commercial materials, which are large-scale produced. This controller is composed by a ceramic capsule used in common domestic water filters; a plastic tube around 1.5 m long, and a pressostate used in domestic washing machines. The capsule and the pressostate are connected through the tube so that all parts are filled with water. The ceramic capsule is the sensor of the controller and has to be placed into the plant substrate. The pressostate has to be placed below the sensor and the lower it is, the higher is the water tension to start the irrigation, since the lower is the pressostate the higher is the water column above it and, therefore, the higher is the tension inside the ceramic cup to pull up the water column. The controller was evaluated in the control of drip irrigation for small containers filled with commercial organic substrate or soil. Linear regressions explained the relationship between the position of pressostate and the maximum water tension in the commercial substrate (p < 0.0054) and soil (p < 0.0001). Among the positions of the pressostate from 0.30 to 0.90 m below the sensor, the water tension changed from 1 to 8 kPa for commercial substrate and 4 to 13 kPa for the soil. This simple controller can be useful to grow plants, applying water automatically in function of the water tension of the plant substrate.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000420-000423
Author(s):  
Kwang-Seong Choi ◽  
Ho-Eun Bae ◽  
Haksun Lee ◽  
Hyun-Cheol Bae ◽  
Yong-Sung Eom

A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process with the result that a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology can be easily implemented. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 μm is, successfully, formed.


Author(s):  
W. T. Khan ◽  
S. K. Bhattacharya ◽  
C. E. Patterson ◽  
G. E. Ponchak ◽  
J. Papapolymerou

Sign in / Sign up

Export Citation Format

Share Document