Reliability testing and Failure Analysis of 3D integrated systems

Author(s):  
Armin Klumpp ◽  
Peter Ramm ◽  
German Franz ◽  
Chad Rue ◽  
Laurens Kwakman
Author(s):  
John Butchko ◽  
Bruce T. Gillette

Abstract Autoclave Stress failures were encountered at the 96 hour read during transistor reliability testing. A unique metal corrosion mechanism was found during the failure analysis, which was creating a contamination path to the drain source junction, resulting in high Idss and Igss leakage. The Al(Si) top metal was oxidizing along the grain boundaries at a faster rate than at the surface. There was subsurface blistering of the Al(Si), along with the grain boundary corrosion. This blistering was creating a contamination path from the package to the Si surface. Several variations in the metal stack were evaluated to better understand the cause of the failures and to provide a process solution. The prevention of intergranular metal corrosion and subsurface blistering during autoclave testing required a materials change from Al(Si) to Al(Si)(Cu). This change resulted in a reduced corrosion rate and consequently prevented Si contamination due to blistering. The process change resulted in a successful pass through the autoclave testing.


Author(s):  
Jeremy A. Walraven ◽  
Edward I. Cole ◽  
Danelle M. Tanner ◽  
Seethambal S. Mani ◽  
Ernest J. Garcia ◽  
...  

Abstract Surface micromachined micromirror technologies are being employed for various commercial and government applications. One application of micromirror technologies in the commercial sector can be found in Digital Light Projection (DLP™) systems used for theater and home entertainment centers. DLP™ systems developed by Texas Instruments uses DMD™ technology (Digital Mirror Device), an array of micromirrors, to project light onto a screen [1]. This technology is also used by Infocus™ projection systems and widescreen tabletop televisions [2]. Here, the micromirrors act as individual pixels, reflecting light onto the screen with high ¡§digital¡¨ resolution. The most recent application of surface micromachined micromirror technology is optical switching [3], which uses micromirrors to switch optical signals from fiber to fiber for lightwave telecommunications [4]. Companies such as Lucent have fabricated entire optical micromirror switching systems based on their Microstar™ technology [5]. For government applications, surface micromachined micromirror arrays have been developed for potential use in a spectrometer system planned for NASA's Next Generation Space Telescope (NGST) [6]. Various processing technologies are used to fabricate surface micromachined micromirrors. The micromirror arrays developed by TI and Lucent [1,4] uses metal for their structural and reflective components. Micromirrors fabricated at Sandia National Laboratories use the SUMMiT™ (Sandia's Ultra-planar MEMS Multi-level Technology) process with metal deposited on the surface of mechanical polysilicon components to reflect light. Optical micromirror arrays designed and fabricated at Sandia for potential use in the NGST have undergone reliability testing and failure analysis. This paper will discuss the failure modes found in these micromirrors after reliability testing. Suggestions and corrective actions for improvements in device performance will also be discussed.


1999 ◽  
Author(s):  
Chong K. Oh ◽  
Soh P. Neo ◽  
Jian H. Bi ◽  
Zong M. Wu ◽  
Lian C. Goh ◽  
...  

2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002071-002111
Author(s):  
Peter Ramm ◽  
Armin Klumpp ◽  
German Franz ◽  
Laurens Kwakman

Today 3D integration based on through silicon vias (TSV) is a well-accepted approach to overcome the performance bottleneck and simultaneously shrink the form factor. According to the ITRS road map [1] there is a variety of reasons for application of 3D integration, such as miniaturization, improved circuit performance, lower power consumption and heterogeneous integration. World-wide, several full 3D process flows have been demonstrated. However, there is a strong demand for considering the behaviour and reliability of 3D-integrated systems [2]. Explicitly, the impact of 3D processes on the system, e.g. thermo-mechanical stresses, has to be evaluated before the implementation to production lines. A test chip for reliability evaluation of 3D TSV technologies was designed and fabricated by Fraunhofer EMFT. The 3D-integrated reliability test chip is a 3-level-stack with TSVs through a middle (2nd) device layer to connect structures on the bottom (1st) level with the top (3rd) level device. The layout is modular, so you can test basic assembly processing with the combination of level 1 with level 2 only and the influence of additional processing when adding level 3. For reliability testing, temperature cycling following the JEDEC standard was performed from −55 C ° to +150 °C (at a soak time of 5 minutes). Additionally, analysis was done by cross sectioning and reversed engineering. The 3D-integrated test chips were fabricated by application of Fraunhofer EMFT's TSV SLID technology. The applied 3D TSV process is based on intermetallic compound (IMC) bonding and TSV formation before stacking [3]. Reliability issues related to thermo-mechanical stress caused by the 3D integration process have to be considered. Failures of 3D integrated systems caused by TSV formation and the permanent bonding process were analysed by a novel high rate milling Focussed Ion Beam equipment. Figure 1 schematically shows the application of the novel FIB analysis technique for the areas of interest (IMC bond, TSV cross sections). Compared to classical FIB systems, the new equipment allows to remove material significantly faster while maintaining good resolution at low beam currents, important for the subsequent analysis. Cross sections of the 3-layer stack are shown in Figure 2. The merits of the novel plasma FIB and the resulting failure analysis will be discussed in detail.


2012 ◽  
Vol 1432 ◽  
Author(s):  
Robert W. Herrick

ABSTRACTVertical-Cavity Surface-Emitting Lasers are making up a large and growing share of the world’s production of semiconductor lasers. But the 850 nm GaAs quantum well VCSELs that make up most of present product are highly vulnerable to dislocation networks. In this paper, we discuss how materials selection affects the reliability of semiconductor lasers generally. We then describe the most common failure mechanisms observed in VCSELs, and what precautions are used to prevent them. We finish with a brief discussion of reliability testing and failure analysis.


2011 ◽  
Author(s):  
Laurens Kwakman ◽  
German Franz ◽  
Maaike Margrete Visser Taklo ◽  
Armin Klumpp ◽  
Peter Ramm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document