Precise Measurement of Dark Bridge between Micro-gap Electrical Contacts in a State of Thermal Equilibrium Condition

Author(s):  
H. Ishida ◽  
M. Taniguchi ◽  
T. Takagi
2020 ◽  
Vol 17 (09) ◽  
pp. 2050134 ◽  
Author(s):  
Zoya Khan ◽  
Shamaila Rani ◽  
Abdul Jawad ◽  
G. Mustafa

In the context of cubic gravity for flat FRW metric we discuss the behavior of cosmological parameters (equation of state (EoS) parameter and square speed of sound) at Hubble horizon with the four different models of Hubble parameter. We observe the validity of generalized second law of thermodynamics (GSLT) and thermal equilibrium condition. It is found that cosmological parameters lie within the observational constraints. Also, GSLT and thermal equilibrium condition holds in almost all cases of Hubble parameter.


2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2419-2429 ◽  
Author(s):  
Azzedine Abdedou ◽  
Khedidja Bouhadef ◽  
Rachid Bennacer

Laminar forced convection flow through a parallel plates channel completely filled with a saturated porous medium where occurs a uniform heat generation per unit volume with volumetric heat generation is investigated numerically. The Darcy-Brinkman model is used to describe the fluid flow. The energy transport mathematical model is based on the two equations model which assumes that there is no local thermal non-equilibrium between the fluid and the solid phases. The dimensionless governing equations with the appropriate boundary conditions are solved by direct numerical simulation. The effect of the controlling parameters, Biot number, thermal conductivities ratio, heat generation rate, and the Reynolds number on the local thermal equilibrium needed and sufficient condition is analyzed. The results reveal essentially that the local thermal equilibrium condition is unfavorably affected by the increase in the heat generation rate, the thermal conductivities ratio, and the decrease in the Biot number. In addition, for a given heat generation rate, the effect of Reynolds number on the local thermal equilibrium condition is reversed depending on the conductivities ratio threshold.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Salman Rafique

We consider the particle creation scenario in the dynamical Chern-Simons modified gravity in the presence of perfect fluid equation of state p=(γ-1)ρ. By assuming various modified entropies (Bekenstein entropy logarithmic entropy, power law correction, and Renyi entropy), we investigate the first law of thermodynamics and generalized second law of thermodynamics on the apparent horizon. In the presence of particle creation rate, we discuss the generalized second law of thermodynamics and thermal equilibrium condition. It is found that thermodynamics laws and equilibrium condition remain valid under certain conditions of parameters.


2005 ◽  
Vol 128 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Y. C. Shiah ◽  
Po-Wen Hwang ◽  
Ruey-Bin Yang

In this article the direct domain-mapping technique is applied in the boundary element method (BEM) to investigate the heat conduction in composites consisting of multiple anisotropic media with embedded point heat sources. By use of a linear coordinate transformation, the physical domain is mapped to an auxiliary plane for 2D or space for 3D, where the heat conduction is considered isotropic. However, the interfaces of adjoined materials with dissimilar properties will overlap or separate in the mapped plane or space. For the use of the subregioning technique in BEM to solve such problems, the thermal equilibrium condition for interfaces is developed to account for boundary distortions. In the mapped plane or space, not only the locations but also the strength of heat sources are transformed accordingly. After the problem is solved in the mapped plane or space, the obtained numerical solution is thereafter interpolated and transformed back to the one in the physical domain.


Author(s):  
Muhammad Saleem ◽  
Zoya Khan ◽  
Abdul Jawad ◽  
Rubab Manzoor ◽  
Wakeel Ahmed

In the framework of [Formula: see text] gravity, we examine the nature of cosmological parameters by choosing different models of [Formula: see text] gravity at past, present as well as future epoch for Hubble parameter from parameterized deceleration parameters. It is found that equation of state parameter leads to quintessence behavior and its ranges lie within Planck data for different constraints. We also study the squared sound speed and the thermodynamics for specific choice of constants. The squared sound speed corresponds to the viable results. Similarly, the validity of GSLT is also investigated for both linear and nonlinear models of [Formula: see text] theory. However, the thermal equilibrium condition holds for both [Formula: see text] models for specific choice of constants.


Meccanica ◽  
2021 ◽  
Author(s):  
Soheil Bazazzadeh ◽  
Marco Morandini ◽  
Mirco Zaccariotto ◽  
Ugo Galvanetto

AbstractA chemo-thermo-mechanical problem is solved using a peridynamic approach to investigate crack propagation in non-reinforced concrete at early-age. In the present study, the temperature evolution and the variation of the hydration degree in conjunction with the mechanical behaviour of cement-based materials are examined. Firstly, a new peridynamic model is introduced to solve fully coupled chemo-thermal problems by satisfying thermal equilibrium condition and hydration law simultaneously and then the effects of the chemo-thermal analysis are imposed in the mechanical framework to investigate all the interactions. The proposed approach is used to solve 2D chemo-thermo-elastic problems and then it is applied to investigate the fracture of concrete structures. Additionally, we examine the accuracy of the method by comparing the crack paths, temperature and hydration degree with those achieved by applying other numerical methods and the experimental data available in the literature. A good agreement is obtained between all sets of results.


Author(s):  
A. G. Agwu Nnanna ◽  
A. Haji-Sheikh ◽  
Kendall T. Harris

A systematic experimental method of estimating the extent of the phase front under local thermal non-equilibrium condition in porous media saturated with phase change material has been developed. During phase change in porous medium, the solid matrix and the pore material are under thermodynamic non-equilibrium condition until the phase change process is complete. It is often hypothesized that the solid matrix and the pore material are in local thermal equilibrium (LTE) condition hence, the arrival of the phase front is predicted based on this hypothesis. An understanding of the rate of freezing and thawing in a porous medium undergoing the phase change process is important to permit proper implementation of procedures such as cryopreservation, cryosurgery, and to predict the thermal performance of passive cooling systems for electronic devices. In this paper, a systematic method of estimating the extent of the phase change front is developed. Results show that during the phase change process the porous medium is far from local thermal equilibrium condition.


Sign in / Sign up

Export Citation Format

Share Document