Analysis of cubic gravity through cosmic aspects

2020 ◽  
Vol 17 (09) ◽  
pp. 2050134 ◽  
Author(s):  
Zoya Khan ◽  
Shamaila Rani ◽  
Abdul Jawad ◽  
G. Mustafa

In the context of cubic gravity for flat FRW metric we discuss the behavior of cosmological parameters (equation of state (EoS) parameter and square speed of sound) at Hubble horizon with the four different models of Hubble parameter. We observe the validity of generalized second law of thermodynamics (GSLT) and thermal equilibrium condition. It is found that cosmological parameters lie within the observational constraints. Also, GSLT and thermal equilibrium condition holds in almost all cases of Hubble parameter.

Author(s):  
Abdul Malik Sultan ◽  
Abdul Jawad

We investigate the cosmological and thermodynamic aspects of Weyl tensor corrected [Formula: see text] gravity. For this purpose, we assume some well-known cosmological bouncing scenarios such as symmetric bounce cosmology, oscillatory cosmology, matter bounce cosmology, little rip cosmology, superbounce cosmology and develop some cosmological parameters. For instance, the equation of state parameter [Formula: see text] describes the quintessence phase for symmetric bounce cosmology, vacuum phase for oscillatory, little rip and matter bounce cosmology while it gives both quintessence and vacuum phases for matter bounce cosmology. It is also observed that the squared speed of sound [Formula: see text] gives positive behavior for all models resulting in that the models assumed are stable. We evaluate generalized second law of thermodynamics which remains valid for all cosmological models except symmetric bounce cosmology. Moreover, we also investigate the thermal equilibrium condition [Formula: see text] and found its validity for all models except symmetric bounce cosmological model.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Salman Rafique

We consider the particle creation scenario in the dynamical Chern-Simons modified gravity in the presence of perfect fluid equation of state p=(γ-1)ρ. By assuming various modified entropies (Bekenstein entropy logarithmic entropy, power law correction, and Renyi entropy), we investigate the first law of thermodynamics and generalized second law of thermodynamics on the apparent horizon. In the presence of particle creation rate, we discuss the generalized second law of thermodynamics and thermal equilibrium condition. It is found that thermodynamics laws and equilibrium condition remain valid under certain conditions of parameters.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 851 ◽  
Author(s):  
Abdul Jawad ◽  
Zoya Khan ◽  
Shamaila Rani ◽  
Kazuharu Bamba

In this paper, we discuss the validity of the generalized second law of thermodynamics in the presence of a multi-component scalar field ( ϕ ) in a spatially flat Friedmann-Robertson-Walker (FRW) universe. We describe the first-order formalism by defining the Hubble parameter as H = - W ( ϕ i ) . By using three super-potential models of the Hubble parameter, we analyze the validity of the generalized law and thermal equilibrium conditions in the presence of the logarithmically-corrected, Bekenstein-Hawking, Sharma-Mittal and R e ´ n y i entropies. It is noticed that the generalized law and thermal equilibrium conditions hold for some cases.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750040 ◽  
Author(s):  
Abdul Jawad ◽  
Nadeem Azhar ◽  
Shamaila Rani

We consider the power law and the entropy corrected holographic dark energy (HDE) models with Hubble horizon in the dynamical Chern–Simons modified gravity. We explore various cosmological parameters and planes in this framework. The Hubble parameter lies within the consistent range at the present and later epoch for both entropy corrected models. The deceleration parameter explains the accelerated expansion of the universe. The equation of state (EoS) parameter corresponds to quintessence and cold dark matter ([Formula: see text]CDM) limit. The [Formula: see text] approaches to [Formula: see text]CDM limit and freezing region in both entropy corrected models. The statefinder parameters are consistent with [Formula: see text]CDM limit and dark energy (DE) models. The generalized second law of thermodynamics remain valid in all cases of interacting parameter. It is interesting to mention here that our results of Hubble, EoS parameter and [Formula: see text] plane show consistency with the present observations like Planck, WP, BAO, [Formula: see text], SNLS and nine-year WMAP.


2021 ◽  
Vol 36 (10) ◽  
pp. 2150069
Author(s):  
Abdul Jawad ◽  
Sidra Saleem ◽  
Saba Qummer

We examine thermodynamically an extra driving term for the flat universe by applying Sharma Mittal entropy to Padmanabhan’s holographic equipartition law. Deviations from the Bekenstein–Hawking entropy by using this law, we generate an extra driving in the acceleration equation. By using the constant and parametrized equation of state parameter, we investigate the different cosmological parameters like deceleration parameter, squared speed of sound, Om-diagnostic and statefinder parameter through graphical approach. We observe compatible results with current observational data in both models. Generalized second law of thermodynamics also remains valid in both cases.


2014 ◽  
Vol 11 (06) ◽  
pp. 1450061 ◽  
Author(s):  
M. Khurshudyan ◽  
B. Pourhassan ◽  
E. O. Kahya

In this paper, we consider Universe filled with two-component fluid. We study two different models. In the first model we assume barotropic fluid with the linear equation of state (EoS) as the first component of total fluid. In the second model we assume van der Waals gas as the first component of total fluid. In both models, the second component assumed generalized ghost dark energy. We consider also interaction between components and discuss, numerically, cosmological quantities for two different parametrizations of EoS which varies with time. We consider this as a toy model of our Universe. We fix parameters of the model by using generalized second law of thermodynamics. Comparing our results with some observational data suggests interacting barotropic fluid with EoS parameter [Formula: see text] and generalized ghost dark energy as an appropriate model to describe our Universe.


Author(s):  
Muhammad Saleem ◽  
Zoya Khan ◽  
Abdul Jawad ◽  
Rubab Manzoor ◽  
Wakeel Ahmed

In the framework of [Formula: see text] gravity, we examine the nature of cosmological parameters by choosing different models of [Formula: see text] gravity at past, present as well as future epoch for Hubble parameter from parameterized deceleration parameters. It is found that equation of state parameter leads to quintessence behavior and its ranges lie within Planck data for different constraints. We also study the squared sound speed and the thermodynamics for specific choice of constants. The squared sound speed corresponds to the viable results. Similarly, the validity of GSLT is also investigated for both linear and nonlinear models of [Formula: see text] theory. However, the thermal equilibrium condition holds for both [Formula: see text] models for specific choice of constants.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950074
Author(s):  
Pritikana Bhandari ◽  
Subenoy Chakraborty

A study of the universal thermodynamics has been done for the inhomogeneous Friedmann–Lemaitre–Robertson–Walker type (FLRW-type) space-time model. Validity of the generalized second law of thermodynamics has been examined across an arbitrary horizon and integrability condition for the generalized Gibbs equation has been determined. Also, the conditions for thermodynamical equilibrium have been presented in a tabular form. Finally, using unified first law, the corrected Bekenstein entropy has been evaluated for both apparent and event horizons.


Sign in / Sign up

Export Citation Format

Share Document