Etch characterization of packaged IC samples in an RIE with endpoint detection by ICP source for failure analysis applications

Author(s):  
J.Y. Liao ◽  
P.M. Batteate
Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
P. Schwindenhammer ◽  
H. Murray ◽  
P. Descamps ◽  
P. Poirier

Abstract Decapsulation of complex semiconductor packages for failure analysis is enhanced by laser ablation. If lasers are potentially dangerous for Integrated Circuits (IC) surface they also generate a thermal elevation of the package during the ablation process. During measurement of this temperature it was observed another and unexpected electrical phenomenon in the IC induced by laser. It is demonstrated that this new phenomenon is not thermally induced and occurs under certain ablation conditions.


Author(s):  
Randal Mulder ◽  
Sam Subramanian ◽  
Tony Chrastecky

Abstract The use of atomic force probe (AFP) analysis in the analysis of semiconductor devices is expanding from its initial purpose of solely characterizing CMOS transistors at the contact level with a parametric analyzer. Other uses found for the AFP include the full electrical characterization of failing SRAM bit cells, current contrast imaging of SOI transistors, measuring surface roughness, the probing of metallization layers to measure leakages, and use with other tools, such as light emission, to quickly localize and identify defects in logic circuits. This paper presents several case studies in regards to these activities and their results. These case studies demonstrate the versatility of the AFP. The needs and demands of the failure analysis environment have quickly expanded its use. These expanded capabilities make the AFP more valuable for the failure analysis community.


1997 ◽  
Vol 468 ◽  
Author(s):  
C. Huang ◽  
S. Mitha ◽  
J. W. Erickson ◽  
R. Clark-Phelps ◽  
Jack Sheng ◽  
...  

ABSTRACTSIMS analysis was applied to the characterization of GaN, AlGaN/GaN and InGaN/GaN grown by MOCVD. Such characterization enables the control of purity and doping, and the determination of growth rate and alloy composition. The analysis can be performed on finished optoelectronic and electronic devices and this makes SIMS technique a powerful tool for failure analysis, reverse engineering, and concurrent engineering.


Author(s):  
Christelle Giret ◽  
Damien Faure

Abstract The Soft Bit failure (Single Bit Failure sensitive to voltage) of a 90nm SRAM cell presented a difficult challenge for the Failure Analysis (FA) group. Physical analysis of these Soft SRAM failures did not show any visual defects; therefore the FA required an accurate electrical characterization. The transistor characteristics of the failing SRAM transistors are needed in order to speculate on the possible failure mechanism. The Nano-Probing technique performed at Nice Device Failure Analysis of Laboratory (NDAL) allowed us to identify anomalies of I/V characteristics like Vt imbalance, low Gain, asymmetrical Vt, ID (Drive current) and Ron. Case studies of an asymmetry phenomenon reported here lead to a correlation between the failure mode and the electrical measurements. This paper demonstrates a suitable electrical methodology and characterization by Nano-Probing in order to successfully manage a FA approach on this type of failure.


Author(s):  
Joseph Myers ◽  
Marsha Abramo ◽  
Michael Anderson ◽  
Michael W. Phaneuf

Abstract As semiconductor device features continue to decrease in size from merely sub micron to below 100 nanometers it becomes necessary to mill smaller and higher aspect ratio FIB vias with reduced ion beam current. This significantly reduces the number of secondary electrons and ions available for endpoint detection and imaging. In addition FIB gas assisted etching introduces a gas delivery nozzle composed of conductive material. This component is grounded to prevent charge build up during ion beam imaging or milling. The proximity of the nozzle to the sample surface creates a shielding effect which reduces the secondary electron detection level as well [1]. The ability to enhance secondary electron imaging for end point detection is required for successful FIB circuit edit and failure analysis applications on advanced technologies. This paper reviews the results obtained using FIB Assist, an image and signal enhancement product for the FEI / Micrion platform, for critical FIB endpoint determination. Examples of FIB fabricated probe points with 30 x 30 nm FIB vias and circuit edit applications endpointing on metal 1 with high aspect ratio holes are presented.


2020 ◽  
Vol 98 (9) ◽  
pp. 109-121
Author(s):  
Amir Peyman Soleymani ◽  
Jixin Chen ◽  
Mark Ricketts ◽  
James Waldecker ◽  
Jasna Jankovic

2020 ◽  
Vol MA2020-02 (33) ◽  
pp. 2164-2164
Author(s):  
Amir Peyman Soleymani ◽  
Jixin Chen ◽  
Mark Ricketts ◽  
James Waldecker ◽  
Jasna Jankovic

Sign in / Sign up

Export Citation Format

Share Document