A 0.084% Nonlinearity Open-Loop Capacitive Micro-accelerometer With On-Chip Digital Nonlinearity Calibration and Embedded EEPROM

Author(s):  
Meng Zhao ◽  
Qiancheng Zhao ◽  
Zhongjian Chen ◽  
Wengao Lu ◽  
Yacong Zhang ◽  
...  
Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Rafel Perelló-Roig ◽  
Jaume Verd ◽  
Sebastià Bota ◽  
Jaume Segura

CMOS-MEMS resonators have become a promising solution thanks to their miniaturization and on-chip integration capabilities. However, using a CMOS technology to fabricate microelectromechanical system (MEMS) devices limits the electromechanical performance otherwise achieved by specific technologies, requiring a challenging readout circuitry. This paper presents a transimpedance amplifier (TIA) fabricated using a commercial 0.35-µm CMOS technology specifically oriented to drive and sense monolithically integrated CMOS-MEMS resonators up to 50 MHz with a tunable transimpedance gain ranging from 112 dB to 121 dB. The output voltage noise is as low as 225 nV/Hz1/2—input-referred current noise of 192 fA/Hz1/2—at 10 MHz, and the power consumption is kept below 1-mW. In addition, the TIA amplifier exhibits an open-loop gain independent of the parasitic input capacitance—mostly associated with the MEMS layout—representing an advantage in MEMS testing compared to other alternatives such as Pierce oscillator schemes. The work presented includes the characterization of three types of MEMS resonators that have been fabricated and experimentally characterized both in open-loop and self-sustained configurations using the integrated TIA amplifier. The experimental characterization includes an accurate extraction of the electromechanical parameters for the three fabricated structures that enables an accurate MEMS-CMOS circuitry co-design.


Author(s):  
Zhaochun Yang ◽  
Qing-Ming Wang ◽  
Patrick Smolinski ◽  
Hongbo Yang

On-chip microaccelerometers using piezoelectric thin films has attracted much interest due to their simple structure and potentially high sensitivity. However, the relationships between the structure of the microaccelerometer and its performance still need to be further developed in more details. In this paper we present a theoretical model for a microaccelerometer with four suspended flexural PZT/silicon beams and a central proof mass configuration. The model takes into account the effect of device geometry and elastic properties of the piezoelectric film, and is supported by the finite element analysis. The good agreement of the results demonstrates the validity of the modeling assumptions. This study shows that the accelerometer sensitivity decreases with increasing the width and thickness of the bilayer beams, and elastic modulus of the mechanical microstructure, while increasing the length of the beam, increases sensitivity. For a fixed beam thickness, a maximum sensitivity exists for appropriate PZT/Si thickness. In addition, it is found that the sensitivity is also proportional to the magnitude of the input acceleration. The results of this study can be readily applied to for on-chip piezoelectric microaccelerometer design and its structural optimization.


Author(s):  
Woo-Cheol Kwon ◽  
Sung-Min Hong ◽  
Sungjoo Yoo ◽  
Byeong Min ◽  
Kyu-Myung Choi ◽  
...  

Author(s):  
Woo-Cheol Kwon ◽  
Sung-Min Hong ◽  
Sungjoo Yoo ◽  
Byeong Min ◽  
Kyu-Myung Choi ◽  
...  

Author(s):  
Christopher Pelzmann ◽  
Laxman Saggere

This paper presents a novel approach to manipulation and assembly of micro-scale objects using a chip-scale multi-fingered micromanipulator, in which multiple, independently controlled compliant fingers coordinate with each other to grasp and manipulate multiple objects simultaneously on-chip. The structural and functional advantages of this multi-fingered micromanipulator in achieving high dexterity in a compact form as compared to other state-of-the-art manipulation tools are discussed. A formulation of the kinematics of the manipulator’s compliant fingers along with two different control strategies including an operator-driven closed-loop control and a semi-autonomous open-loop control for coordinated manipulation and on-chip assembly of micro-scale objects are introduced. Finally, the details of implementation of both control strategies and successful experimental demonstration of manipulations and assembly of two interlocking micro-scale parts with sub-micron mating clearance using the multifingered manipulator are presented.


2013 ◽  
Vol E96.C (2) ◽  
pp. 270-276
Author(s):  
Ramesh K. POKHAREL ◽  
Xin LIU ◽  
Dayang A.A. MAT ◽  
Ruibing DONG ◽  
Haruichi KANAYA ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2556 ◽  
Author(s):  
Salvina Gagliano ◽  
Fabiana Cairone ◽  
Angelo Amenta ◽  
Maide Bucolo

In this work, the authors present a feed-forward control system for two-phase microfluidic processes, widely adaptable for system-on-chip control in a wide variety of bio-chemical experimental conditions, in which two fluids interact in a micro-channel. The proposed approach takes advantage of the optical monitoring of the slugs flow and the on-line signal processing in the frequency domain for slug passage detection. The experimental characterization of the slug flows by the frequencies of the slugs passage was obtained and used to drive the pumps. The open loop control system was designed and implemented in Labview. The platform includes four modules and a GUI. The first manages the communication between the PC and the syringe pumps, while the second is used to implement the control law. The third manages signal acquisition from the photo-diodes and the last implements the soft-sensor for the signal analysis. Wide-reaching experimental design was carried out for characterization and validation of this approach.


Sign in / Sign up

Export Citation Format

Share Document