Analysis of output voltage of switching frequency modulated DC-DC converter operating in discontinuous conduction mode

Author(s):  
Deniss Stepins
Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2588
Author(s):  
Sen-Tung Wu ◽  
Yu-Ting Cheng

This paper proposes an AC/DC single-stage structure by integrating a boost topology and an active clamp flyback (ACF) circuit with power-factor-correction (PFC) function. The PFC function can be achieved by controlling a boost PFC topology operated in the discontinuous conduction mode. With the coordination of active clamping components, a resonant technique is obtained and zero-voltage-switching (ZVS) can be achieved. The proposed converter is combined with the advantages of: (1) compared with two-stage circuit, a single stage circuit decreases the component of the main circuit and reduces the complexity of the control circuit; (2) a boost topology with PFC function operated in discontinuous conduction mode can be accomplished without adding any current detecting technique or detecting input signal; (3) by using the inductor from the PFC stage, ZVS function can be achieved without any additional inductor; (4) the increment of switching frequency facilitates the optimization of power density; (5) the conducting loss at the secondary side can be reduced by adding the synchronous rectification; (6) in this proposed scheme, the dual transformers with series-parallel connection are utilized, the current at the secondary side can be shared for lowering the conduction loss of the synchronous transistors. Finally, a prototype converter with AC 110 V input and DC 19 V/6.32 A (120 W) output under 300 kHz switching frequency is implemented. The efficiency of the proposed converter reaches 88.20% and 0.984 power factor in full load condition.


Author(s):  
Sathiyamoorthy S ◽  
Gopinath M

Power Factor Correction (PFC) has become one of the most active research areas in the field of power electronics due to the surplus power required for various industrial applications around the world. In this work, a novel SEPIC converter with the Tapped Inductor model operating in Discontinuous Conduction Mode (TI-SEPIC- DCM) is proposed for PFC. The proposed TI-SEPIC-DCM improves the voltage gain through voltage multiplier cell and charge pump circuit. The voltage multiplier cell also helps in attaining the Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS), which results in higher switching frequency and size reduction. Moreover, a third order harmonic reduction control loop has been proposed for better harmonic mitigation. The proposed work has been simulated in MATLAB and the results are obtained to validate the significance of the proposed TI-SEPIC- DCM with near unity power factor and reduced harmonics.


Author(s):  
Moh. Zaenal Efendi ◽  
Abdul Rizal ◽  
Aldi Erzanuari ◽  
Suryono . ◽  
Novie Ayub Windarko

This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2.Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.


2020 ◽  
Vol 10 (5) ◽  
pp. 6362-6367
Author(s):  
Y. Almalaq ◽  
M. Matin

This paper introduces a two-switch high gain non-isolated Cuk converter which can be used as a high gain DC-DC converter in renewable energy, such as photovoltaic and fuel cell, applications because their output is low. As the conventional, the proposed Cuk converter provides negative output voltage but with a higher voltage in magnitude. The main advantage of the proposed converter is having lower voltage stress with the ability to maintain a higher voltage gain. By combining a switched-inductor and a switched-capacitor into the conventional Cuk converter, the proposed Cuk converter has the ability to reach 13 times the input voltage for a duty cycle D of 0.75. Also, by attaching more switched-inductors to the proposed Cuk converter, more voltage gain can be achieved. A complete theoretical analysis of the Continuous Conduction Mode (CCM) of the proposed Cuk converter is presented and the key aspects of the circuit design have been derived. Also, a comparison in terms of voltage gain and voltage stress between the proposed Cuk converter and Cuk converters using other techniques is presented. The proposed Cuk converter has been designed for 100W rated power, -152V output voltage, 50kHz switching frequency, and 75% duty cycle. The presented converter is simulated in Matlab/Simulink and the results are discussed.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6785
Author(s):  
Ileana González ◽  
Antonio Sánchez ◽  
Diego Langarica-Cordoba ◽  
Fernando Yanine-Misleh ◽  
Victor Ramirez

This paper solves the buck–boost converter operation problem in the discontinuous conduction mode and the feeding a DC bus of a combined battery/solar-powered electric vehicle grid. Since the sun’s radiation has a very important effect on the performance of photovoltaic solar modules due to its continuous variation, the main task of the system under study is the regulation of the output voltage from an MPPT system located at the output of the panels in order to obtain a DC bus voltage that is fixed to 24 V. This is ensured via a double-loop scheme, where the current inner loop relies on sliding-mode control; meanwhile, the outer voltage loop considers a proportional–integral action. Additionally, the current loop implements an adaptive hysteresis logic in order to operate at a fixed frequency. The closed-loop system’s performance is checked via numerical results with respect to step changes in the load, input voltage, and output voltage reference variations.


2010 ◽  
Vol 47 (2) ◽  
pp. 168-173
Author(s):  
Predrag Pejović

The discontinuous conduction mode in switching power converters is addressed in the paper. Instead of assuming that the load is a linear resistor, an equation is derived that relates the output current to the output voltage and other circuit parameters. Closed-form expressions that relate the output current to the output voltage and the other circuit parameters are obtained for all three of the basic switching converters: buck, boost, and buck–boost. The results obtained apply regardless the load type. To simplify notation, normalization of the output current and the output voltage is introduced. The proposed teaching method has been verified in teaching practice.


Sign in / Sign up

Export Citation Format

Share Document