scholarly journals A PI + Sliding-Mode Controller Based on the Discontinuous Conduction Mode for an Unidirectional Buck–Boost Converter with Electric Vehicle Applications

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6785
Author(s):  
Ileana González ◽  
Antonio Sánchez ◽  
Diego Langarica-Cordoba ◽  
Fernando Yanine-Misleh ◽  
Victor Ramirez

This paper solves the buck–boost converter operation problem in the discontinuous conduction mode and the feeding a DC bus of a combined battery/solar-powered electric vehicle grid. Since the sun’s radiation has a very important effect on the performance of photovoltaic solar modules due to its continuous variation, the main task of the system under study is the regulation of the output voltage from an MPPT system located at the output of the panels in order to obtain a DC bus voltage that is fixed to 24 V. This is ensured via a double-loop scheme, where the current inner loop relies on sliding-mode control; meanwhile, the outer voltage loop considers a proportional–integral action. Additionally, the current loop implements an adaptive hysteresis logic in order to operate at a fixed frequency. The closed-loop system’s performance is checked via numerical results with respect to step changes in the load, input voltage, and output voltage reference variations.

2021 ◽  
pp. 0309524X2110605
Author(s):  
Mohamed Bendaoud

This paper presents an approach to design the sliding mode control for an AC-DC converter, consisting of a diode rectifier in series with a boost converter. The results obtained show that this converter with the proposed control law can be used to control the extraction of mechanical power when connecting the permanent magnet synchronous generator (PMSG) to a wind turbine. The boost converter operates in discontinuous conduction mode (DCM) in order to reduce the total harmonic distortion (THD) of the currents in the PMSG. To verify the performance of the proposed method, a simulation study is performed.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5712
Author(s):  
Catalina González-Castaño ◽  
Carlos Restrepo ◽  
Samir Kouro ◽  
Enric Vidal-Idiarte ◽  
Javier Calvente

This work presents a novel dc-dc bidirectional buck–boost converter between a battery pack and the inverter to regulate the dc-bus in an electric vehicle (EV) powertrain. The converter is based on the versatile buck–boost converter, which has shown an excellent performance in different fuel cell systems operating in low-voltage and hard-switching applications. Therefore, extending this converter to higher voltage applications such as the EV is a challenging task reported in this work. A high-efficiency step-up/step-down versatile converter can improve the EV powertrain efficiency for an extended range of electric motor (EM) speeds, comprising urban and highway driving cycles while allowing the operation under motoring and regeneration (regenerative brake) conditions. DC-bus voltage regulation is implemented using a digital two-loop control strategy. The inner feedback loop is based on the discrete-time sliding-mode current control (DSMCC) strategy, and for the outer feedback loop, a proportional-integral (PI) control is employed. Both digital control loops and the necessary transition mode strategy are implemented using a digital signal controller TMS320F28377S. The theoretical analysis has been validated on a 400 V 1.6 kW prototype and tested through simulation and an EV powertrain system testing.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
M. Srikanth ◽  
B. Pakkiraiah ◽  
Poonam Upadhyay ◽  
S. Tara Kalyani

This paper develops the photovoltaic bidirectional inverter (BI) operated in dual mode for the seamless power transfer to DC and AC loads. Normal photovoltaic (PV) output voltage is fed to boost converter, but in space application, boost converter is not so preferable. To overcome this, buck and boost converters are proposed in this paper. Duty cycle to this converter is provided with the help of the outcome of the maximum power point tracking (MPPT) controller. This can be implemented by using perturbation and observation method. The MPPT will operate the switch between buck and boost modes. When the output voltage of a PV array is close to the dc bus voltage, then the bidirectional inverter can fulfill both rectification and grid connected mode. To control the power flow between dc bus and ac grid, a dc distribution system is used to regulate the dc bus voltage to a convinced level. Moreover, the bidirectional inverter must fulfill grid connection (sell power) and rectification (buy power) with power factor correction (PFC) to control the power flow between dc bus and ac grid. The simulations and hardware experimental results of a 2.5 kVA circuit are presented to validate the performance of the proposed dual-mode seamless power transfer.


Sign in / Sign up

Export Citation Format

Share Document