Servo motor controller design for robotic manipulator

Author(s):  
Shih-An Li ◽  
Chung-Wei Weng ◽  
Yi-Hong Chen ◽  
Chia-Hung Lo ◽  
Min-Hao Yang ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhaojian Wang ◽  
Hamid Reza Karimi

We focus on the antivibration controller design problem for electrical power steering (EPS) systems. The EPS system has significant advantages over the traditional hydraulic steering system. However, the improper motor controller design would lead to the steering wheel vibration. Therefore, it is necessary to investigate the antivibration control strategy. For the implementation study, we also present the motor driver design and the software design which is used to monitor the sensors and the control signal. Based on the investigation on the regular assistant algorithm, we summarize the difficulties and problems encountered by the regular algorithm. After that, in order to improve the performance of antivibration and the human-like steering feeling, we propose a new assistant strategy for the EPS. The experiment results of the bench test illustrate the effectiveness and flexibility of the proposed control strategy. Compared with the regular controller, the proposed antivibration control reduces the vibration of the steering wheel a lot.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Li ◽  
Yi-ming Fang ◽  
Jian-xiong Li ◽  
Zhuang Ma

In this paper, a fuzzy PI control method based on nonlinear feedforward compensation is proposed for the nonsinusoidal vibration system of mold driven by servo motor, rotated in single direction with variable speed. During controller design, there are mainly two issues to consider: (i) nonlinear relationship (approximate periodic function) between mold displacement and servo motor speed and (ii) uncertainties caused by backlash due to motor variable speed. So, firstly, the relationship between mold displacement and motor rotation speed is built directly based on the rotation vector method. Then, an observer is designed to estimate the uncertainties and feedforward compensation. Secondly, as the motor rotates in single direction with variable speed, a fuzzy control with bidirectional parameter adjustment is adopted to improve rapidity and stability based on the traditional PI method. Finally, some simulation results show the effectiveness of the proposed control method.


2006 ◽  
Vol 505-507 ◽  
pp. 529-534 ◽  
Author(s):  
Chin Sheng Chen ◽  
Yu Reng Lee

This paper presented a digital servo driver that realizes an auto-tuning feedback and feedforward controller design using on-line parameters identification. Firstly, the variant inertia constant, damping constant and the disturbed load torque of the servo motor are estimated by the recursive least square (RLS) estimator, which is composed of an RLS estimator and a disturbance torque compensator. Furthermore, the auto-tuning algorithm of feedback and feedforward controller is realized according to the estimated parameters to match the tracking specification. The proposed auto-tuning digital servo controllers are evaluated and compared experimentally with a traditional controller on a microcomputer-controlled servo motor positioning system. The experimental results show that this auto-tuning digital servo system remarkably reduces the tracking error.


Author(s):  
H. Abbas ◽  
S. M. Hashemi ◽  
H. Werner

In this paper, low-complexity linear parameter-varying (LPV) modeling and control of a two-degrees-of-freedom robotic manipulator is considered. A quasi-LPV model is derived and simplified in order to facilitate LPV controller synthesis. An LPV gain-scheduled, decentralized PD controller in linear fractional transformation form is designed, using mixed sensitivity loop shaping to take — in addition to high tracking performance — noise and disturbance rejection into account, which are not considered in model-based inverse dynamics or computed torque control schemes. The controller design is based on the existence of a parameter-dependent Lyapunov function — employing the concept of quadratic separators — thus reducing the conservatism of design. The resulting bilinear matrix inequality (BMI) problem is solved using a hybrid gradient-LMI technique. Experimental results illustrate that the LPV controller clearly outperforms a decentralized LTI-PD controller and achieves almost the same accuracy as a model-based inverse dynamics and a full-order LPV controllers in terms of tracking performance while being of significantly lower complexity.


2014 ◽  
Vol 513-517 ◽  
pp. 863-866
Author(s):  
Bo Qu ◽  
Jing Jing Liu

This paper designs a permanent magnet synchronous motor controller based on STM32. The space vector control algorithm is introduced. The space vector control algorithm and SVPWM are realized based on STM32. The speed and current loop PID regulator can make the accurate control of permanent magnet synchronous motor. This paper presents the hardware and software design of the control system and software architecture. The result shows that the controller design is feasible and it can be widely applied to various CNS.


2012 ◽  
Vol 249-250 ◽  
pp. 691-695
Author(s):  
Gui Lin Lin ◽  
Guo Qing Xu ◽  
Wei Min Li ◽  
Bin Bin Liu

Electronics cooling research has been largely focused on high heat flux removal from computer chips in the recent years. However, the equally important field of high-power electronic devices has been experiencing a major paradigm shift from air cooling to liquid cooling over the last decade. For example, multiple insulated-gate bipolar transistors (IGBT) used in a power drive for motor used in electric vehicle. Motor drive system plays an important impact on electric vehicle’ performance, so thermal design should be considered in the early stages during the motor controller design and layout of the devices. In this paper, a new type of water-cooled cold plate for motor controller was designed, and its cooling ability was analyzed by using different material base on Fluent. The results provide reference on the optimization design of cold plate.


Sign in / Sign up

Export Citation Format

Share Document