Thermal Analysis of Cold Plate for Motor Controller Based on Fluent

2012 ◽  
Vol 249-250 ◽  
pp. 691-695
Author(s):  
Gui Lin Lin ◽  
Guo Qing Xu ◽  
Wei Min Li ◽  
Bin Bin Liu

Electronics cooling research has been largely focused on high heat flux removal from computer chips in the recent years. However, the equally important field of high-power electronic devices has been experiencing a major paradigm shift from air cooling to liquid cooling over the last decade. For example, multiple insulated-gate bipolar transistors (IGBT) used in a power drive for motor used in electric vehicle. Motor drive system plays an important impact on electric vehicle’ performance, so thermal design should be considered in the early stages during the motor controller design and layout of the devices. In this paper, a new type of water-cooled cold plate for motor controller was designed, and its cooling ability was analyzed by using different material base on Fluent. The results provide reference on the optimization design of cold plate.

2005 ◽  
Author(s):  
Robert Hannemann ◽  
Joseph Marsala ◽  
Martin Pitasi

Dramatically increased power dissipation in electronic and electro-optic devices has prompted the development of advanced thermal management approaches to replace conventional air cooling using extended surfaces. One such approach is Pumped Liquid Multiphase Cooling (PLMC), in which a refrigerant is evaporated in a cold plate in contact with the devices to be cooled. Heat is then rejected in an air or water-cooled condenser and the working fluid is returned to the cold plate. Reliable, highly efficient, small-scale components are required for the commercial application of this technology. This paper presents experimental results for two-phase meso-scale heat exchangers (cold plates) for use in electronics cooling. The configurations studied include single and multi-pass designs using R134a as the working fluid. With relatively low flow rates, low effective thermal resistances were achieved at power levels as high as 376 W. The results confirm the efficacy of PLMC technology for cooling the most powerful integrated circuits planned for the next decade.


Author(s):  
N. Jeffers ◽  
J. Punch ◽  
E. Walsh

Contemporary electronic systems are currently constrained by the high heat fluxes in which they generate at component level. It is evident that heat fluxes are currently approaching the limits of forced air cooling, and that liquid cooling is now under consideration. In this paper five commercially-available and one custom-made cold plates were characterised experimentally. The six cold plates utilized different geometries which included: an array of jets impinging onto a pin matrix; a fin structure; a pin fin structure; a large serpentine channel structure; a slot jet impinging onto wave shaped fins; and the custom cold plate having no significant geometry associated with it, as it was used as a bench mark. The bench mark is anticipated to be the minimum cost solution. The pressure drop, thermal resistance and hydrodynamic power consumption were determined for each solution as a function of flow rate. The results showed that there was a variety of operational power consumption costs coupled with a range of performance levels reached by the six cold plates. This emphasizes the need of a optimum cooling package for a specific application. A relationship of thermal resistance as a function of hydrodynamic power consumed was formulated, thus facilitating the selection of a cold plate for a practical application.


2021 ◽  
Author(s):  
Nikhil R. Lakhkar

Abstract The Electrification of commercial vehicles is happening at a rapid pace. Most of the major automotive corporations are pursuing this opportunity to include electric vehicles in their portfolios. The commercial trucking industry has also been exploring the use of electric vehicles for goods transport including perishables. The transition to electrically driven vehicles has led to the need for electrically driven HVAC systems. To support this evolving commercial market, we developed an electrically driven variable speed compressor platform comprising of compressor and variable frequency drive (VFD). The product platform addresses two categories of vehicles: 1) Hybrid vehicle – the vehicle in this category uses conventional IC engine and has traditional batteries that output 48VDC. 2) Electric vehicle – the vehicle in this category is electrically driven using battery bank or traction drive that gives 650VDC as output. Hence, 650V DC is input to VFD. Both these applications were addressed with two drive designs. In this paper, we discuss the thermal design aspects of both 48V and 650V variable frequency drives. In this publication, the product development process is described from product conception, to final product. The mechanical / environmental design considerations while designing these drives were, (1) The drive was expected to be mounted under the vehicle bed and hence should be strong enough to withstand shock and vibration, (2) the drive was decided to be air cooled (4) the drive was designed to be IP67 so that it can withstand harsh road conditions, (5) the desired operating temperature range was between −40°C to 85°C for 48V and −40°C to 65°C for 650V and (6) the estimated time of service was expected to be 10 years. We were able to achieve an operating margin of −40°C to 70°C at full load for hybrid vehicle drive (48VDC) and −40°C to 65°C for electric vehicle drive (650VDC) using air cooling.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4020
Author(s):  
Peng Sun ◽  
Yiping Lu ◽  
Jianfei Tong ◽  
Youlian Lu ◽  
Tianjiao Liang ◽  
...  

In order to provide a theoretical basis for the thermal design of the neutron production target, flow and heat transfer characteristics are studied by using numerical simulations and experiments. A rectangular mini-channel experimental model consistent with the geometric shape of the heat dissipation structure of neutron production target was established, in which the aspect ratio and gap thickness of the test channel were 53.8:1 and 1.3 mm, respectively. The experimental results indicate that the critical Re of the mini-channel is between 3500 and 4000, and when Re reaches 21,000, Nu can reach 160. The simulation results are in good agreement with the experimental data, and the numerical simulation method can be used for the variable structure optimization design of the target in the later stage. The relationship between the flow pressure drop of the target mini-channel and the aspect ratio and Re is obtained by numerical simulation. The maximum deviation between the correlation and the experimental value is 6%.


2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


Author(s):  
Edric Wee Ming Wong ◽  
Choo Jun Tan ◽  
Jenn Hwai Leong ◽  
Syauqina Akmar Mohd-Shafri ◽  
Dahaman Ishak ◽  
...  

Author(s):  
Behnam Parizad Benam ◽  
Abdolali Khalili Sadaghiani ◽  
Vedat Yağcı ◽  
Murat Parlak ◽  
Khellil Sefiane ◽  
...  

Author(s):  
Daniele Landi ◽  
Paolo Cicconi ◽  
Michele Germani

An important issue in the mechanical industry is the reduction of the time to market, in order to meet quickly the customer needs. This goal is very important for SMEs that produce small lots of customized products. In the context of greenhouse gas emissions reduction, vehicles powered by electric motors seem to be the most suitable alternative to the traditional internal combustion engine vehicles. The market of customized electric vehicles is a niche market suitable for SMEs. Nowadays, the energy storage system of an electric vehicle powertrain consists of several Li-ion cells arranged in a container called battery pack. Particularly, the battery unit is considered as the most critical component in electric vehicle, because it impacts on performance and life cycle cost. Currently, the design of a battery pack mostly depends on the related market size. A longer design time is expected in the case of a large scale production. While a small customized production requires more agility and velocity in the design process. The proposed research focuses on a design methodology to support the designer in the evaluation of the battery thermal behavior. This work has been applied in the context of a customized small production. As test case, an urban electric light commercial vehicle has been analyzed. The designed battery layout has been evaluated and simulated using virtual prototyping tools. A cooling configuration has been analyzed and then prototyped in a physical vehicle. The virtual thermal behavior of a Li-ion battery has been validated at the test bench. The real operational conditions have been analyzed reproducing several ECE-15 driving cycles and many acceleration runs at different load values. Thermocouples have measured the temperature values during the physical experiments, in order to validate the analytical thermal profile evaluated with the proposed design approach.


Sign in / Sign up

Export Citation Format

Share Document