2021 ◽  
Author(s):  
Vladimir Sergeevich Milyutin ◽  
Eugeniy Vasilevich Rogozhnikov ◽  
Kirill Petrovskiy ◽  
Dmitriy Pokamestov ◽  
Edgar Dmitriyev ◽  
...  

Abstract Frequency synchronization is a necessary operation for all wireless communication systems. Due to the wide frequency range defined for 5G NR systems, this procedure becomes critical. To ensure high transmission rates and the use of high-order modulation, up to 256 QAM for 5G communication systems, it is necessary to ensure high frequency synchronization accuracy. In this article, we have reviewed various approaches to implementing frequency synchronization and proposed, in our opinion, the most effective method for correcting the frequency shift of the signal.


2014 ◽  
Vol 654 ◽  
pp. 370-373
Author(s):  
Bin Zhang ◽  
Bao Ren Chen ◽  
Yue Zhuo ◽  
Guang Cai Wang ◽  
Yi Jie Ding

In order to improve the security and reliability of digital synchronization network, digital synchronized equipment mostly uses reference source design and ensure the output performance in abnormal situation by redundancy back-up of multiple reference sources. The paper not only describes the concept of time-frequency equipment reference source and its judgment index, but also details a multi-source dynamic determination algorithm for digital synchronization equipment. A multi-component weighted average approach is designed the multi-source dynamic source selected processes by the study of several time sources of anomaly detection to improve the accuracy of the synchronization signal. The algorithm with simple structure can help keeping the high synchronization accuracy of multi-source time synchronization system.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6148
Author(s):  
Hyuno Kim ◽  
Masatoshi Ishikawa

Precisely evaluating the frame synchronization of the camera network is often required for accurate data fusion from multiple visual information. This paper presents a novel method to estimate the synchronization accuracy by using inherent visual information of linearly oscillating light spot captured in the camera images instead of using luminescence information or depending on external measurement instrument. The suggested method is compared to the conventional evaluation method to prove the feasibility. Our experiment result implies that the estimation accuracy of the frame synchronization can be achieved in sub-millisecond order.


2020 ◽  
Vol 32 (10) ◽  
pp. 1864-1880
Author(s):  
Brian Mathias ◽  
Anna Zamm ◽  
Pierre G. Gianferrara ◽  
Bernhard Ross ◽  
Caroline Palmer

We addressed how rhythm complexity influences auditory–motor synchronization in musically trained individuals who perceived and produced complex rhythms while EEG was recorded. Participants first listened to two-part auditory sequences (Listen condition). Each part featured a single pitch presented at a fixed rate; the integer ratio formed between the two rates varied in rhythmic complexity from low (1:1) to moderate (1:2) to high (3:2). One of the two parts occurred at a constant rate across conditions. Then, participants heard the same rhythms as they synchronized their tapping at a fixed rate (Synchronize condition). Finally, they tapped at the same fixed rate (Motor condition). Auditory feedback from their taps was present in all conditions. Behavioral effects of rhythmic complexity were evidenced in all tasks; detection of missing beats (Listen) worsened in the most complex (3:2) rhythm condition, and tap durations (Synchronize) were most variable and least synchronous with stimulus onsets in the 3:2 condition. EEG power spectral density was lowest at the fixed rate during the 3:2 rhythm and greatest during the 1:1 rhythm (Listen and Synchronize). ERP amplitudes corresponding to an N1 time window were smallest for the 3:2 rhythm and greatest for the 1:1 rhythm (Listen). Finally, synchronization accuracy (Synchronize) decreased as amplitudes in the N1 time window became more positive during the high rhythmic complexity condition (3:2). Thus, measures of neural entrainment corresponded to synchronization accuracy, and rhythmic complexity modulated the behavioral and neural measures similarly.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1878
Author(s):  
Bing Jiang ◽  
Zeqi Chen ◽  
Feifan Chen

The equivalent-circuit model (ECM) is widely used in online estimating the parameters and states of lithium-ion batteries. However, the sampling delay between the voltage and current of a battery is generally overlooked, which is unavoidable in a modular battery management system (BMS) and would lead to wrong results in the estimation of battery parameters and states. In this paper, with the first-order resistor–capacitor (RC) model as our battery model, we analyze the influence mechanism of sampling delay and then propose an optimized method for online estimating battery parameters. The mathematical model derived from the first-order RC model and the approximation method of first-order derivative are optimized. The recursive least squares (RLS) algorithm is used for identifying the parameters of the model. In order to verify the proposed method, a modular battery test system with high sampling frequency and high synchronization accuracy is developed. The experiment results indicate that the sampling delay would cause the estimation process to fluctuate, and the optimized method effectively improves the tolerance range of sampling delay.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1367
Author(s):  
Jie Shen ◽  
Ming Yin ◽  
Ji-An Luo ◽  
Zhi-Bo Wang ◽  
Zhi Wang ◽  
...  

Time synchronization is an important middleware function that supports the Quality of Service (QoS) of systems in wireless sensor array networks. Instead of providing high synchronization accuracy for all application scenarios, we argue that synchronization protocols should be application specific. In this paper, we exploit the synchronization requirements of target-tracking systems in wireless sensor array networks and propose an energy-efficient Sensor Array Synchronization Protocol (SASP), which provides the required synchronization accuracy to guarantee the QoS. Specifically, when no target appears, to guarantee system lifetime, coarse synchronization is achieved with little overhead by piggybacking time information onto periodical network maintenance packets. Once targets appear, SASP achieves high inter-array and relatively higher intra-array synchronization accuracy rather than the traditional network-wide high accuracy on average. In this way, it guarantees reliable communication and accurate data fusion, while reducing energy consumption. Theoretical analysis and extensive evaluations show the effectiveness of the proposed protocol.


Sign in / Sign up

Export Citation Format

Share Document