Study on transportation ability and adsorption model for NH4+ in Tianjin shallow porous aquifer medium

Author(s):  
Duo Li ◽  
Yahong Zhou ◽  
Xiaogang Fu ◽  
Aifang Gao
Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 486
Author(s):  
Alcina Johnson Sudagar ◽  
Slávka Andrejkovičová ◽  
Fernando Rocha ◽  
Carla Patinha ◽  
Maria R. Soares ◽  
...  

Metakaolins (MKs) prepared from low-grade kaolins located in the Alvarães (A) and Barqueiros (B) regions of Portugal were used as the aluminosilicate source to compare their effect on the compressive strength and heavy metal adsorption of geopolymers. Natural zeolite, an inexpensive, efficient adsorbent, was used as an additive in formulations to enhance geopolymers’ adsorption capacities and reduce MK utilization’s environmental footprint. Geopolymers were synthesized with the replacement of MK by zeolite up to 75 wt.% (A25, B25—25% MK 75% zeolite; A50, B50—50% MK 50% zeolite; A75, B75—75% MK 25% zeolite; A100, B100—100% MK). The molar ratios of SiO2/Al2O3 and Na2O/Al2O3 were kept at 1 to reduce the sodium silicate and sodium hydroxide environmental impact. Geopolymers’ crystallography was identified using X-ray diffraction analysis. The surface morphology was observed by scanning electron microscopy to understand the effect of zeolite incorporation. Chemical analysis using X-ray fluorescence spectroscopy and energy dispersive X-ray spectroscopy yielded information about the geopolymers’ Si/Al ratio. Compressive strength values of geopolymers obtained after 1, 14, and 28 days of curing indicate high strengths of geopolymers with 100% MK (A100—15.4 MPa; B100—32.46 MPa). Therefore, zeolite did not aid in the improvement of the compressive strength of both MK-based geopolymers. The heavy metal (Cd2+, Cr3+, Cu2+, Pb2+, and Zn2+) adsorption tests exhibit relatively higher adsorption capacities of Barqueiros MK-based geopolymers for all the heavy metals except Cd2+. Moreover, zeolite positively influenced divalent cations’ adsorption on the geopolymers produced from Barqueiros MK as B75 exhibits the highest adsorption capacities, but such an influence is not observed for Alvarães MK-based geopolymers. The general trend of adsorption of the heavy metals of both MK-based geopolymers is Pb2+ > Cd2+ > Cu2+ > Zn2+ > Cr3+ when fitted by the Langmuir isotherm adsorption model. The MK and zeolite characteristics influence geopolymers’ structure, strength, and adsorption capacities.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1251
Author(s):  
Michael Vigdorowitsch ◽  
Alexander N. Pchelintsev ◽  
Liudmila E. Tsygankova

Using experimental data for the adsorption of phosphates out of wastewater on waste recycled bricks, published independently in MDPI Processes before (2020), this message re-visits the mathematical theory of the Freundlich adsorption model. It demonstrates how experimental data are to be deeper treated to model the saturation regime and to bridge a chasm between those areas where the data fit the Freundlich power function and where a saturation of surface adsorption centers occurs.


2012 ◽  
Vol 65 (8) ◽  
pp. 1435-1440 ◽  
Author(s):  
Thiago L. Marques ◽  
Vanessa N. Alves ◽  
Luciana M. Coelho ◽  
Nívia M. M. Coelho

Metal contaminants are generally removed from effluents by chemical and physical processes which are often associated with disadvantages such as the use of toxic reagents, generation of toxic waste and high costs. Hence, new techniques have been developed, among them the study of natural adsorbents, for instance, the use of Moringa oleifera seeds. The potential of M. oleifera seeds for nickel removal in aqueous systems was investigated. The seeds utilized were obtained from plants grown in Uberlândia/Brazil. After being dried and pulverized, the seeds were treated with 0.1 mol/L NaOH. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analyses were used for the characterization of the material. Using the optimized methodology (50 mL of 4.0 mg/L Ni(II), pH range of 4.0–6.0, agitation time of 5 min and adsorption mass of 2.0 g) more than 90% of Ni(II) could be removed from water samples. The sorption data were fitted satisfactorily by the Langmuir adsorption model. Evaluation applying the Langmuir equation gave the monolayer sorption capacity as 29.6 mg/g. The results indicate that this material could be employed in the extraction of nickel, considering its ease of use, low cost and environmental viability, which make it highly attractive for application in developing countries.


2007 ◽  
Vol 544-545 ◽  
pp. 131-134
Author(s):  
Sardor Abdukakharovich Mavlyankariev ◽  
Dong Seok Rhee

Modified polypropylene granules (MDPG) were coated by manganese dioxide and their surface and adsorptive characteristics were studied. Surface characteristics of the adsorbent were investigated by B.E.T. surface area and mercury porosimetry. Coating has significantly increased the surface area of granules from 0.12 m 2 /g B.E.T. N 2 to 15.42 m 2 /g. Gas pycnometry measurements resulted in low density of 0.13 g/cm 3 for uncoated granules, the fact ascribed to 0.65 porosity measured. Coating increased micro pore volume of raw granules by a factor of 58. Adsorption experiments were conducted in column flow-through reactors at pH 6.0 and 10 g/L sorbent dosage for mixture of four metal species, each having 5 mg/L initial concentration. More than 60 % of Pb and Cu was removed within first 20 min, whereas just over 29 and 13 % for Cd and Zn respectively. Furthermore, more than 99, 84, 40, 16 % of Pb, Cu, Cd, and Zn was removed within 1 h. Adsorption efficiencies for 5 ppm of initial metal concentration at pH 5.0 and 10 g/L sorbent/solute ratio resulted in 4.9, 3.9 mg of Pb and Cu sorbed per gram of sorbent. And these ratios for separate metal ions were substantially higher than those for the mixture of the four metal ions. For 5 g/L of sorbent under the same parameters, removal efficiencies of Cd and Zn were respectively 0.98, 0.75 mg/g, correlating well with Freundlich adsorption model. Adsorption kinetics showed relatively fast removal rates within first 5 h of sorption. Desorption resulted in eluting 57, 70, 76, 78 % of the initial feeding concentrations for Pb, Cu, Cd, Zn, respectively.


1995 ◽  
Vol 29 (2) ◽  
pp. 446-457 ◽  
Author(s):  
Marc F. Benedetti ◽  
Chris J. Milne ◽  
David G. Kinniburgh ◽  
Willem H. Van Riemsdijk ◽  
Luuk K. Koopal

2021 ◽  
Vol 598 ◽  
pp. 126228
Author(s):  
Yang Cao ◽  
Shuning Dong ◽  
Zhenxue Dai ◽  
Lin Zhu ◽  
Ting Xiao ◽  
...  

2011 ◽  
Vol 197-198 ◽  
pp. 131-135
Author(s):  
Li Fang Zhang ◽  
Ying Ying Chen ◽  
Wen Jie Zhang

Biosorption of chromium (VI) ions from aqueous solution with fungal biomass Penicillium sp. was investigated in the batch system. The influence of contact time, solution pH, biosorbent concentration, initial concentration of Cr (VI) ions and temperature on biosorption capacity of Cr (VI) ions was studied. The uptake of Cr (VI) was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent concentration and increased with increase in initial concentration of Cr (VI) ions. The experiment results also showed that high temperatures increased the biosorption capacity of Cr (VI) by fungal biomass. It was found that the biosorption equilibrium data were fitted very well to the kangmuir as well as to the Freundlich adsorption model. The maximum sorptive capacities obtained from the Langmuir equation at temperature of 20, 30 and 40°C were 25.91, 32.68 and 35.97 mg/g for Cr (VI) ions, respectively. The results of this study indicated that the fungal biomass of Penicillium sp. is a promising biosorbent for removal of chromium (VI) ions from the water.


Sign in / Sign up

Export Citation Format

Share Document