Effect of Sintering Temperature on the Fatigue Life of Additively Printed Electronics During Cyclic Bending

Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Ben Leever ◽  
Scott Miller
1974 ◽  
Vol 96 (3) ◽  
pp. 171-176 ◽  
Author(s):  
J. D. Heald ◽  
E. Kiss

This paper presents the results of low-cycle fatigue testing and analysis of 26 piping components and butt-welded sections. The test specimens were fabricated from Type-304 stainless steel and carbon steel, materials which are typically used in the primary piping of light water nuclear reactors. Components included 6-in. elbows, tees, and girth butt-welded straight sections. Fatigue testing consisted of subjecting the specimens to deflection-controlled cyclic bending with the objective of simulating system thermal expansion type loading. Tests were conducted at room temperature and 550 deg F, with specimens at room temperature subjected to 1050 psi constant internal hydraulic pressure in addition to cyclic bending. In two tests at room temperature, however, stainless steel elbows were subjected to combined simultaneous cyclic internal pressure and cyclic bending. Predictions of the fatigue life of each of the specimens tested have been made according to the procedures specified in NB-3650 of Section III[1] in order to assess the code design margin. For the purpose of the assessment, predicted fatigue life is compared to actual fatigue life which is defined as the number of fatigue cycles producing complete through-wall crack growth (leakage). Results of this assessment show that the present code fatigue rules are adequately conservative.


Author(s):  
Haider Abbas Luaibi

Fatigue is a form of failure that occurs in structures subjected to dynamic and fluctuating stresses, where failure can occur at a stress level significantly lower than the tensile or yield strength of a static load under these circumstances. The term “fatigue” is used because, after a long period of repetitive stress or stress cycling, this form of failure typically occurs. Fatigue is important because it is the single largest cause of metal failure, estimated to account for about 90% of all metal failures; polymers and ceramics (except glasses) are also prone to this form of failure. This research is studying the failure analysis, fatigue life and endurance limit of brass metal experimental and numerical under cyclic bending moments


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Haoyu Huang ◽  
Yuan-Zhi Zhu ◽  
Wen-Shao Chang

The behaviour under cyclic bending and in particular the fatigue properties of shape memory alloy (SMA) bars are important for civil engineering applications. In this paper, structural and functional fatigue is studied for both NiTi- and copper-based shape memory alloys. The results are presented from cyclic bending tests on 7 mm diameter NiTi and 12 mm diameter CuAlMn SMA bars targeted at 100,000 cycles. During the tests, dynamic loading at 1 Hz, 5 Hz, and 8 Hz was applied for different strain levels (0.5%, 1%, 2%, and 6%). The stress-strain curve, damping ratio, and secant stiffness were analysed for material characterisation, and the evolution of these parameters was studied to assess functional fatigue. The fatigue life is extended dramatically when the strain is below 1%, and the structural fatigue life of CuAlMn is shown to be better than that of NiTi and to depend on the loading rate. However, decay in stiffness can be found in the CuAlMn SMA, which is considered to be caused particularly by its long grain boundary.


Author(s):  
D. Rozumek ◽  
Z. Marciniak

The paper presents the fatigue test results including the cracks growth in the composite zirconium-steel subjected to oscillatory bending. Specimens of square cross-section without melted layer and with a melted layer were tested. In the specimens the net ratio of thickness of steel to zirconium layers was h1 : h2 = 2.5 : 1. It was observed that a higher fraction of the intermetallic inclusions near the interface increase the fatigue life. Two different interaction mechanisms between a crack and interface were observed.


Wear ◽  
2011 ◽  
Vol 271 (11-12) ◽  
pp. 2857-2867 ◽  
Author(s):  
I.I. Argatov ◽  
X. Gómez ◽  
W. Tato ◽  
M.A. Urchegui

1966 ◽  
Vol 88 (2) ◽  
pp. 211-215 ◽  
Author(s):  
John Finke

A 4 1/2-in. API full-hole, tool-joint pin is stress-analyzed photoelastically over a range of standoffs. A three-dimensional plastic model is loaded to different values of makeup torque. At each torque a range of cyclic bending loads and a range of cyclic tensile loads are simulated. The results show that makeup torques must be raised for extreme hand-tight, shoulder-gap standoffs if a given pin tension is to be maintained. Maximum static root stresses are shown to be nearly independent of standoff if a constant pin tension is maintained. Further analysis indicates that the fluctuating pin-root stresses are also nearly independent of standoff if complete relieving of the shoulder compression loads is prevented. These considerations indicate that standoff has a negligible effect on the fatigue life of a tool-joint pin if relieving of the joint shoulders under operating conditions is prevented.


2013 ◽  
Vol 26 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Peiyan Huang ◽  
Guangwan Liu ◽  
Xinyan Guo ◽  
Hao Zhou ◽  
Xiaohong Zheng

Sign in / Sign up

Export Citation Format

Share Document