Polysilicon on Quartz Substrate for Silicide Based Row-Column CMUTs

Author(s):  
Kitty Steenberg ◽  
Erik Vilain Thomsen
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4166
Author(s):  
Román Fernández ◽  
María Calero ◽  
Yolanda Jiménez ◽  
Antonio Arnau

Monolithic quartz crystal microbalance (MQCM) has recently emerged as a very promising technology suitable for biosensing applications. These devices consist of an array of miniaturized QCM sensors integrated within the same quartz substrate capable of detecting multiple target analytes simultaneously. Their relevant benefits include high throughput, low cost per sensor unit, low sample/reagent consumption and fast sensing response. Despite the great potential of MQCM, unwanted environmental factors (e.g., temperature, humidity, vibrations, or pressure) and perturbations intrinsic to the sensor setup (e.g., mechanical stress exerted by the measurement cell or electronic noise of the characterization system) can affect sensor stability, masking the signal of interest and degrading the limit of detection (LoD). Here, we present a method based on the discrete wavelet transform (DWT) to improve the stability of the resonance frequency and dissipation signals in real time. The method takes advantage of the similarity among the noise patterns of the resonators integrated in an MQCM device to mitigate disturbing factors that impact on sensor response. Performance of the method is validated by studying the adsorption of proteins (neutravidin and biotinylated albumin) under external controlled factors (temperature and pressure/flow rate) that simulate unwanted disturbances.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1018
Author(s):  
Giuseppe Fiorentino ◽  
Ben Jones ◽  
Sophie Roth ◽  
Edith Grac ◽  
Murali Jayapala ◽  
...  

A composite, capillary-driven microfluidic system suitable for transmitted light microscopy of cells (e.g., red and white human blood cells) is fabricated and demonstrated. The microfluidic system consists of a microchannels network fabricated in a photo-patternable adhesive polymer on a quartz substrate, which, by means of adhesive bonding, is then connected to a silicon microfluidic die (for processing of the biological sample) and quartz die (to form the imaging chamber). The entire bonding process makes use of a very low temperature budget (200 °C). In this demonstrator, the silicon die consists of microfluidic channels with transition structures to allow conveyance of fluid utilizing capillary forces from the polymer channels to the silicon channels and back to the polymer channels. Compared to existing devices, this fully integrated platform combines on the same substrate silicon microfluidic capabilities with optical system analysis, representing a portable and versatile lab-on-chip device.


Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 104
Author(s):  
Anastasia Yakuhina ◽  
Alexey Kadochkin ◽  
Vyacheslav Svetukhin ◽  
Dmitry Gorelov ◽  
Sergey Generalov ◽  
...  

This article presents the results of the study of the influence of the most significant parameters of the side wall roughness of an ultra-thin silicon nitride lightguide layer of multimode integrated optical waveguides with widths of 3 and 8 microns. The choice of the waveguide width was made due to the need to provide multimode operation for telecommunication wavelengths, which is necessary to ensure high integration density. Scattering in waveguide structures was measured by optical frequency domain reflectometry (OFDR) of a backscattering reflectometer. The finite difference time domain method (FDTD) was used to study the effect of roughness parameters on optical losses in fabricated waveguides, the roughness parameters that most strongly affect optical scattering were determined, and methods of its significant reduction were specified. The prospects for implementing such structures on a quartz substrate are justified.


2013 ◽  
Vol 652-654 ◽  
pp. 527-531 ◽  
Author(s):  
A.N. Alias ◽  
T.I. Tunku Kudin ◽  
Z.M. Zabidi ◽  
M.K. Harun ◽  
Ab Malik Marwan Ali ◽  
...  

The optical absorption spectra of blended poly (N-carbazole) (PVK) with polyvinylpyrrolidone (PVP) in various compositions are investigated. A doctor blade technique was used to coat the blended polymer on a quartz substrate. The electronic parameters such as absorption edge (Ee), allowed direct band gap (Ed), allowed indirect band gap (Ei), Urbach edge (Eu) and steepness parameter (γ) were calculated using Tauc/Davis-Mott Model. The results reveal that the Ee, Ed and Ei increase with increasing of PVP ratio. There also have variation changing in Urbach energy and steepness parameter.


2008 ◽  
Vol 112 (16) ◽  
pp. 5032-5038 ◽  
Author(s):  
Xiao-Hong Li ◽  
Li-Jun Zhao ◽  
Jin-Ling Dong ◽  
Han-Shuang Xiao ◽  
Yun-Hong Zhang

2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


2012 ◽  
Vol 3 ◽  
pp. 629-636 ◽  
Author(s):  
Gilad Gotesman ◽  
Rahamim Guliamov ◽  
Ron Naaman

We studied the photoluminescence and time-resolved photoluminescence from self-assembled bilayers of donor and acceptor nanoparticles (NPs) adsorbed on a quartz substrate through organic linkers. Charge and energy transfer processes within the assemblies were investigated as a function of the length of the dithiolated linker (DT) between the donors and acceptors. We found an unusual linker-length-dependency in the emission of the donors. This dependency may be explained by charge and energy transfer processes in the vertical direction (from the donors to the acceptors) that depend strongly on charge transfer processes occurring in the horizontal plane (within the monolayer of the acceptor), namely, parallel to the substrate.


2010 ◽  
Vol 25 (8) ◽  
pp. 1989-1993 ◽  
Author(s):  
Al. Palaniappan ◽  
W.H. Goh ◽  
J.N. Tey ◽  
I.P.M. Wijaya ◽  
S.M. Moochhala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document