Gunn Effect in n-InP MOSFET at positive gate bias and impact ionization conditions

Author(s):  
V. Gruzinskis ◽  
E. Starikov ◽  
P. Shiktorov ◽  
H. Marinchio ◽  
J. Torres ◽  
...  
1968 ◽  
Vol 12 (3) ◽  
pp. 81-83 ◽  
Author(s):  
Gerald S. Picus ◽  
Donald F. DuBois ◽  
Lynette B. Van Atta

Author(s):  
Norimichi Chinone ◽  
Yasuo Cho

Abstract Gate-bias dependent depletion layer distribution and carrier distributions in cross-section of SiC power MOSFET were measured by newly developed measurement system based on super-higher-order scanning nonlinear dielectric microscope. The results visualized gate-source voltage dependent redistribution of depletion layer and carrier.


Author(s):  
P. Singh ◽  
V. Cozzolino ◽  
G. Galyon ◽  
R. Logan ◽  
K. Troccia ◽  
...  

Abstract The time delayed failure of a mesa diode is explained on the basis of dendritic growth on the oxide passivated diode side walls. Lead dendrites nucleated at the p+ side Pb-Sn solder metallization and grew towards the n side metallization. The infinitesimal cross section area of the dendrites was not sufficient to allow them to directly affect the electrical behavior of the high voltage power diodes. However, the electric fields associated with the dendrites caused sharp band bending near the silicon-oxide interface leading to electron tunneling across the band gap at velocities high enough to cause impact ionization and ultimately the avalanche breakdown of the diode. Damage was confined to a narrow path on the diode side wall because of the limited influence of the electric field associated with the dendrite. The paper presents experimental details that led to the discovery of the dendrites. The observed failures are explained in the context of classical semiconductor physics and electrochemistry.


Author(s):  
Kai Zhang ◽  
Weifeng Lü ◽  
Peng Si ◽  
Zhifeng Zhao ◽  
Tianyu Yu

Background: In state-of-the-art nanometer metal-oxide-semiconductor-field-effect- transistors (MOSFETs), optimization of timing characteristic is one of the major concerns in the design of modern digital integrated circuits. Objective: This study proposes an effective back-gate-biasing technique to comprehensively investigate the timing and its variation due to random dopant fluctuation (RDF) employing Monte Carlo methodology. Methods: To analyze RDF-induced timing variation in a 22-nm complementary metal-oxide semiconductor (CMOS) inverter, an ensemble of 1000 different samples of channel-doping for negative metal-oxide semiconductor (NMOS) and positive metal-oxide semiconductor (PMOS) was reproduced and the input/output curves were measured. Since back-gate bias is technology dependent, we present in parallel results with and without VBG. Results: It is found that the suppression of RDF-induced timing variations can be achieved by appropriately adopting back-gate voltage (VBG) through measurements and detailed Monte Carlo simulations. Consequently, the timing parameters and their variations are reduced and, moreover, that they are also insensitive to channel doping with back-gate bias. Conclusion: Circuit designers can appropriately use back-gate bias to minimize timing variations and improve the performance of CMOS integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document