Suppression of Timing Variations due to Random Dopant Fluctuation by Back-Gate Bias in a Nanometer CMOS Inverter

Author(s):  
Kai Zhang ◽  
Weifeng Lü ◽  
Peng Si ◽  
Zhifeng Zhao ◽  
Tianyu Yu

Background: In state-of-the-art nanometer metal-oxide-semiconductor-field-effect- transistors (MOSFETs), optimization of timing characteristic is one of the major concerns in the design of modern digital integrated circuits. Objective: This study proposes an effective back-gate-biasing technique to comprehensively investigate the timing and its variation due to random dopant fluctuation (RDF) employing Monte Carlo methodology. Methods: To analyze RDF-induced timing variation in a 22-nm complementary metal-oxide semiconductor (CMOS) inverter, an ensemble of 1000 different samples of channel-doping for negative metal-oxide semiconductor (NMOS) and positive metal-oxide semiconductor (PMOS) was reproduced and the input/output curves were measured. Since back-gate bias is technology dependent, we present in parallel results with and without VBG. Results: It is found that the suppression of RDF-induced timing variations can be achieved by appropriately adopting back-gate voltage (VBG) through measurements and detailed Monte Carlo simulations. Consequently, the timing parameters and their variations are reduced and, moreover, that they are also insensitive to channel doping with back-gate bias. Conclusion: Circuit designers can appropriately use back-gate bias to minimize timing variations and improve the performance of CMOS integrated circuits.

2014 ◽  
Vol 13 (02) ◽  
pp. 1450012 ◽  
Author(s):  
Manorama Chauhan ◽  
Ravindra Singh Kushwah ◽  
Pavan Shrivastava ◽  
Shyam Akashe

In the world of Integrated Circuits, complementary metal–oxide–semiconductor (CMOS) has lost its ability during scaling beyond 50 nm. Scaling causes severe short channel effects (SCEs) which are difficult to suppress. FinFET devices undertake to replace usual Metal Oxide Semiconductor Field Effect Transistor (MOSFETs) because of their better ability in controlling leakage and diminishing SCEs while delivering a strong drive current. In this paper, we present a relative examination of FinFET with the double gate MOSFET (DGMOSFET) and conventional bulk Si single gate MOSFET (SGMOSFET) by using Cadence Virtuoso simulation tool. Physics-based numerical two-dimensional simulation results for FinFET device, circuit power is presented, and classifying that FinFET technology is an ideal applicant for low power applications. Exclusive FinFET device features resulting from gate–gate coupling are conversed and efficiently exploited for optimal low leakage device design. Design trade-off for FinFET power and performance are suggested for low power and high performance applications. Whole power consumptions of static and dynamic circuits and latches for FinFET device, believing state dependency, show that leakage currents for FinFET circuits are reduced by a factor of over ~ 10X, compared to DGMOSFET and ~ 20X compared with SGMOSFET.


1996 ◽  
Vol 35 (Part 1, No. 2B) ◽  
pp. 812-817 ◽  
Author(s):  
Manabu Itsumi ◽  
Hideo Akiya ◽  
Takemi Ueki ◽  
Masato Tomita ◽  
Masataka Yamawaki

Sign in / Sign up

Export Citation Format

Share Document