Carrier Redistribution Analysis of Gate-Biased SiC Power-MOSFET Using Super-Higher-Order Scanning Nonlinear Dielectric Microscopy

Author(s):  
Norimichi Chinone ◽  
Yasuo Cho

Abstract Gate-bias dependent depletion layer distribution and carrier distributions in cross-section of SiC power MOSFET were measured by newly developed measurement system based on super-higher-order scanning nonlinear dielectric microscope. The results visualized gate-source voltage dependent redistribution of depletion layer and carrier.

Author(s):  
N. Chinone ◽  
Y. Cho ◽  
T. Nakamura

Abstract Evaluation techniques for semiconductor devices are keys for device development with low cost and short time to market. Especially, dopant and depletion layer distribution in devices is a critical electrical property that needs to be evaluated. Super-higher-order nonlinear dielectric microscopy (SHOSNDM) is one of the promising techniques for semiconductor device evaluation. We developed a method for imaging detailed dopant distribution and depletion layers in semiconductor devices using SHO-SNDM. As a demonstration, a cross-section of a SiC power semiconductor device was measured by this method and detailed dopant distribution and depletion layer distributions were imaged.


Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


2011 ◽  
Vol 11 (5) ◽  
pp. S192-S194
Author(s):  
Dae Chul Kim ◽  
Mi-Young Song ◽  
Yonghyun Kim ◽  
Young-Woo Kim ◽  
Young Rock Choi ◽  
...  

2013 ◽  
Vol 4 ◽  
pp. 974-987 ◽  
Author(s):  
Nikita Arnold ◽  
Boyang Ding ◽  
Calin Hrelescu ◽  
Thomas A Klar

We numerically simulate the compensation of absorption, the near-field enhancement as well as the differential far-field scattering cross section for dye-doped polystyrene spheres (radius 195 nm), which are half-covered by a silver layer of 10–40 nm thickness. Such silver capped spheres are interesting candidates for nanoplasmonic lasers, so-called spasers. We find that spasing requires gain levels less than 3.7 times higher than those in commercially available dye-doped spheres. However, commercially available concentrations are already apt to achieve negative absorption, and to narrow and enhance scattering by higher order modes. Narrowing of the plasmonic modes by gain also makes visible higher order modes, which are normally obscured by the broad spectral features of the lower order modes. We further show that the angular distribution of the far-field scattering of the spasing modes is by no means dipole-like and is very sensitive to the geometry of the structure.


1985 ◽  
Vol 249 (5) ◽  
pp. C435-C446 ◽  
Author(s):  
A. A. Manthey

Increase in extracellular K+ concentration causes delay in desensitization onset during prolonged application of carbamylcholine to the postjunctional membrane in muscle. This could be due to a direct action of K+ on acetylcholine receptors or to some change in the receptors related to K+-induced effects on transmembrane potential. The question of direct vs. voltage-dependent action of K+ was investigated in frog muscle (Rana pipiens) using a point-source voltage clamp. In conductance measurements first without voltage control, desensitization rate in bath media containing 33 mM K+ was -0.198 s-1 among fibers showing an average potential of -30 mV and -0.104 s-1 in 165 mM K+ where the average potential was -2 mV, a decrease of 47%. By comparison, in voltage-clamp tests at a nominal holding potential of +20 mV, increasing extracellular K+ from 33 to 165 mM caused a decrease of 61% in desensitization rate from -0.151 to -0.059 s-1. Another series in 165 mM K+ at a holding level of +10 mV showed a decrease of 67% to a rate of 0.047 s-1. It is concluded that increases in extracellular K+ can delay desensitization onset independently of effects on transmembrane potential. It is suggested that this could result from a direct interaction of K+ with sites on the outer receptor moiety or within channels, but probably not at the inner membrane face, if the latter are considered in equilibrium with bulk intracellular K+.


2001 ◽  
Vol 688 ◽  
Author(s):  
Yasuo Cho ◽  
Koya Ohara

AbstractA higher order nonlinear dielectric microscopy technique with higher lateral and depth resolution than conventional nonlinear dielectric imaging is investigated. The proposed technique involves the measurement of higher order nonlinear dielectric constants, with a depth resolution of down to 1.5 nm. The technique is demonstrated to be very useful for observing surface layers of the order of unit cell thickness on ferroelectric materials.


2001 ◽  
Vol 40 (Part 1, No. 5B) ◽  
pp. 3544-3548 ◽  
Author(s):  
Yasuo Cho ◽  
Koya Ohara ◽  
Atsushi Koike ◽  
Hiroyuki Odagawa

Sign in / Sign up

Export Citation Format

Share Document