Inferring the Individual Psychopathologic Deficits with Structural Connectivity in a Longitudinal Cohort of Schizophrenia

Author(s):  
Yi Sun ◽  
Zhe Zhang ◽  
Ioannis Kakkos ◽  
George K. Matsopoulos ◽  
Jingjia Yuan ◽  
...  
2019 ◽  
Vol 5 (1) ◽  
pp. 205521731983725 ◽  
Author(s):  
RH Gross ◽  
SH Sillau ◽  
AE Miller ◽  
C Farrell ◽  
SC Krieger

Background The Multiple Sclerosis Severity Score (MSSS), combining the Expanded Disability Status Scale (EDSS) and disease duration, attempts to stratify multiple sclerosis (MS) patients based on their rate of progression. Its prognostic ability in the individual patient remains unproven. Objectives To assess the stability of MSSS within individual persons with MS in a longitudinal cohort, to evaluate whether certain factors influence MSSS variability, and to explore the ability of MSSS to predict future ambulatory function. Methods A single-center retrospective review was performed of patients following a single provider for at least 8 years. Mixed model regression modeled MSSS over time. A Kaplan–Meier survival plot was fitted, using change of baseline MSSS by at least one decile as the event. Cox modeling assessed the influence of baseline clinical and demographic factors on the hazard of changing MSSS by at least one decile. Linear models evaluated the impact of baseline EDSS, baseline MSSS, and other factors on the Timed 25-Foot Walk (T25FW). Results Out of 122 patients, 68 (55.7%) deviated from baseline MSSS by at least one decile. Final T25FW had slightly weaker correlation to baseline MSSS than to baseline EDSS, which was moderately strongly correlated with future log T25FW. Conclusion Individual MSSS scores often vary over time. Clinicians should exercise caution when using MSSS to prognosticate.


2016 ◽  
Vol 28 (11) ◽  
pp. 2533-2556 ◽  
Author(s):  
Vitaly L. Galinsky ◽  
Lawrence R. Frank

We present a quantitative statistical analysis of pairwise crossings for all fibers obtained from whole brain tractography that confirms with high confidence that the brain grid theory (Wedeen et al., 2012a ) is not supported by the evidence. The overall fiber tracts structure appears to be more consistent with small angle treelike branching of tracts rather than with near-orthogonal gridlike crossing of fiber sheets. The analysis uses our new method for high-resolution whole brain tractography that is capable of resolving fibers crossing of less than 10 degrees and correctly following a continuous angular distribution of fibers even when the individual fiber directions are not resolved. This analysis also allows us to demonstrate that the whole brain fiber pathway system is very well approximated by a lamellar vector field, providing a concise and quantitative mathematical characterization of the structural connectivity of the human brain.


2022 ◽  
Author(s):  
Spase Petkoski ◽  
Petra Ritter ◽  
Viktor Jirsa

Structural connectivity of the brain at different ages is analyzed using diffusion-weighted Magnetic Resonance Imaging (MRI) data. The largest decrease of the number and average length of stream- lines is found for the long inter-hemispheric links, with the strongest impact for frontal regions. From the BOLD functional MRI (fMRI) time series we identify age-related changes of dynamic functional connectivity (dFC) and spatial covariation features of the FC links captured by meta- connectivity (MC). They indicate more constant dFC, but wider range and variance of MC. Finally we applied computational whole-brain network model based on oscillators, which mechanistically expresses the impact of the spatio-temporal structure of the brain (weights and the delays) to the dynamics. With this we tested several hypothesis, which revealed that the spatio-temporal reorga- nization of the brain with ageing, supports the observed functional fingerprints only if the model accounts for: (i) compensation of the individual brains for the overall loss of structural connectivity, and (ii) decrease of propagation velocity due to the loss of myelination. We also show that having these two conditions, it is sufficient to decompose the time-delays as bimodal distribution that only distinguishes between intra- and inter-hemispheric delays, and that the same working point also captures the static FC the best.


2020 ◽  
Author(s):  
Alexandre Pron ◽  
Christine Deruelle ◽  
Olivier Coulon

AbstractThe central sulcus is probably one of the most studied folds in the human brain, owing to its clear relationship with primary sensory-motor functional areas. However, due to the difficulty of estimating the trajectories of the U-shape fibres from diffusion MRI, the short structural connectivity of this sulcus remains relatively unknown. In this context, we studied the spatial organization of these U-shape fibres along the central sulcus. Based on high quality diffusion MRI data of 100 right-handed subjects and state-of-the-art pre-processing pipeline, we first define a connectivity space that provide a comprehensive and continuous description of the short-range anatomical connectivity around the central sulcus at both the individual and group levels. We then infer the presence of five major U-shape fibre bundles at the group level in both hemispheres by applying unsupervised clustering in the connectivity space. We propose a quantitative investigation of their position and number of streamlines as a function of phenotypic traits such as sex and hemispheres and functional scores such as handedness and manual dexterity. Main findings of this study are twofold: a description of U-shape short-range connectivity along the central sulcus at group level and the evidence of a significant relationship between the position of three hand related U-shape fibre bundles and the handedness score of subjects.


Author(s):  
C.N. Sun

The present study demonstrates the ultrastructure of the gingival epithelium of the pig tail monkey (Macaca nemestrina). Specimens were taken from lingual and facial gingival surfaces and fixed in Dalton's chrome osmium solution (pH 7.6) for 1 hr, dehydrated, and then embedded in Epon 812.Tonofibrils are variable in number and structure according to the different region or location of the gingival epithelial cells, the main orientation of which is parallel to the long axis of the cells. The cytoplasm of the basal epithelial cells contains a great number of tonofilaments and numerous mitochondria. The basement membrane is 300 to 400 A thick. In the cells of stratum spinosum, the tonofibrils are densely packed and increased in number (fig. 1 and 3). They seem to take on a somewhat concentric arrangement around the nucleus. The filaments may occur scattered as thin fibrils in the cytoplasm or they may be arranged in bundles of different thickness. The filaments have a diameter about 50 A. In the stratum granulosum, the cells gradually become flatted, the tonofibrils are usually thin, and the individual tonofilaments are clearly distinguishable (fig. 2). The mitochondria and endoplasmic reticulum are seldom seen in these superficial cell layers.


Author(s):  
Anthony J. Godfrey

Aldehyde-fixed chick retina was embedded in a water-containing resin of glutaraldehyde and urea, without dehydration. The loss of lipids and other soluble tissue components, which is severe in routine methods involving dehydration, was thereby minimized. Osmium tetroxide post-fixation was not used, lessening the amount of protein denaturation which occurred. Ultrathin sections were stained with 1, uranyl acetate and lead citrate, 2, silicotungstic acid, or 3, osmium vapor, prior to electron microscope examination of visual cell outer segment ultrastructure, at magnifications up to 800,000.Sections stained with uranyl acetate and lead citrate (Fig. 1) showed that the individual disc membranes consisted of a central lipid core about 78Å thick in which dark-staining 40Å masses appeared to be embedded from either side.


Author(s):  
Anthony A. Paparo ◽  
Judith A. Murphy

The purpose of this study was to localize the red neuronal pigment in Mytilus edulis and examine its role in the control of lateral ciliary activity in the gill. The visceral ganglia (Vg) in the central nervous system show an over al red pigmentation. Most red pigments examined in squash preps and cryostat sec tions were localized in the neuronal cell bodies and proximal axon regions. Unstained cryostat sections showed highly localized patches of this pigment scattered throughout the cells in the form of dense granular masses about 5-7 um in diameter, with the individual granules ranging from 0.6-1.3 um in diame ter. Tissue stained with Gomori's method for Fe showed bright blue granular masses of about the same size and structure as previously seen in unstained cryostat sections.Thick section microanalysis (Fig.l) confirmed both the localization and presence of Fe in the nerve cell. These nerve cells of the Vg share with other pigmented photosensitive cells the common cytostructural feature of localization of absorbing molecules in intracellular organelles where they are tightly ordered in fine substructures.


Sign in / Sign up

Export Citation Format

Share Document