Oxidation smoothing of sidewall roughness in AlGaAs heterostructure waveguides

Author(s):  
Di Liang ◽  
D.C. Hall ◽  
G.M. Peake
Keyword(s):  
2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Author(s):  
Gang Zhao ◽  
Qiong Shu ◽  
Yue Li ◽  
Jing Chen

A novel technology is developed to fabricate high aspect ratio bulk titanium micro-parts by inductively coupled plasma (ICP) etching. An optimized etching rate of 0.9 μm/min has been achieved with an aspect ratio higher than 10:1. For the first time, SU-8 is used as titanium etching mask instead of the traditional hard mask such as TiO2 or SiO2. With an effective selectivity of 3 and a spun-on thickness beyond 100 μm, vertical etching sidewall and low sidewall roughness are obtained. Ultra-deep titanium etching up to 200 μm has been realized, which is among the best of the present reports. Titanium micro-springs and planks are successfully fabricated with this approach.


2007 ◽  
Vol 90 (19) ◽  
pp. 193122 ◽  
Author(s):  
Chengqing Wang ◽  
Ronald L. Jones ◽  
Eric K. Lin ◽  
Wen-Li Wu ◽  
Jim Leu

2009 ◽  
Vol 8 (5) ◽  
pp. 611-616 ◽  
Author(s):  
Xiaohui Tang ◽  
V. Bayot ◽  
N. Reckinger ◽  
D. Flandre ◽  
J.-P. Raskin ◽  
...  

2004 ◽  
Vol 462-463 ◽  
pp. 471-476 ◽  
Author(s):  
S.K. Pani ◽  
C.C. Wong ◽  
K. Sudharsanam ◽  
S.G. Mhaisalkar ◽  
V. Lim ◽  
...  

2014 ◽  
pp. 503-537 ◽  
Author(s):  
V. Constantoudis ◽  
E. Gogolides ◽  
G.P. Patsis
Keyword(s):  

2014 ◽  
Vol 2014 (DPC) ◽  
pp. 000737-000767
Author(s):  
Cyprian Uzoh ◽  
Liang Wang ◽  
Zhuowen Sun ◽  
Andrew Cao ◽  
Bong-Sub Lee ◽  
...  

3D-IC has been increasingly adopted by the industry owing to its promise of higher device speed and package bandwidth, improved power consumption, reduced form factor, and lower cost for important applications over a wide range of industrial segments including image sensors, logic-memory and logic-logic integration, MEMS, integrated optical interposers and LEDs. This presentation is a systematic study of multiple experimental factors affecting the electrical performance, reliability and scalability of TSVs. Electrical modeling and simulation was used to determine the key factors influencing singal transmission and return losses in TSVs at high (>1 GHz) frequencies. A variety of process modules and steps for the fabrication of through silicon vias were then systematically optimized to ensure high performance. The modules evaluated include TSV etch, TSV fill, chemical mechanical polishing (CMP), pad finish, bonding schemes, wafer thinning, via reveal, passivation, wiring and bumping. One example is the improvement of TSV profile and sidewall roughness through the optimization of DRIE parameters and wet chemical methods to reduce silicon sidewall roughness from that of a typical Bosch etch to less than 10nm which is critical for adhesion of barrier/seed layer and the final reliability of 2.5D packaging. Scalability of void-free via fill process with respect to TSV diameter and depth was addressed by using highly conformal barrier layers. Adhesion of Cu to the barrier layer was also improved upon detailed analysis to prevent delamination and improve reliability. A bottom up plating chemistry with significantly low impurity content was utilized to mitigate voids, seams and excessive overburden in the TSV. Its impact on stress and delamination issues and subsequent reliability failures was studied in details. The annealing process following TSV formation is systematically studied with varying conditions and characterized with metrology and electrical tests to investigate its effect on microstructure and material properties. The process parameters were tuned for CMP of Cu, adhesion and barrier layer without causing corrosion or delamination between adjacent layers. Process requirements for these modules in TSV process are closely related. This presentation will review the process module development in the context of their effects on the integrated TSV parameters (performance, reliability and scalability). We will also provide an in-depth discussion on process module optimization, electrical and mechanical characterization and cost reduction methodologies.


Sign in / Sign up

Export Citation Format

Share Document