Optimized TSV Module for High Performance 2.5D Device Packaging

2014 ◽  
Vol 2014 (DPC) ◽  
pp. 000737-000767
Author(s):  
Cyprian Uzoh ◽  
Liang Wang ◽  
Zhuowen Sun ◽  
Andrew Cao ◽  
Bong-Sub Lee ◽  
...  

3D-IC has been increasingly adopted by the industry owing to its promise of higher device speed and package bandwidth, improved power consumption, reduced form factor, and lower cost for important applications over a wide range of industrial segments including image sensors, logic-memory and logic-logic integration, MEMS, integrated optical interposers and LEDs. This presentation is a systematic study of multiple experimental factors affecting the electrical performance, reliability and scalability of TSVs. Electrical modeling and simulation was used to determine the key factors influencing singal transmission and return losses in TSVs at high (>1 GHz) frequencies. A variety of process modules and steps for the fabrication of through silicon vias were then systematically optimized to ensure high performance. The modules evaluated include TSV etch, TSV fill, chemical mechanical polishing (CMP), pad finish, bonding schemes, wafer thinning, via reveal, passivation, wiring and bumping. One example is the improvement of TSV profile and sidewall roughness through the optimization of DRIE parameters and wet chemical methods to reduce silicon sidewall roughness from that of a typical Bosch etch to less than 10nm which is critical for adhesion of barrier/seed layer and the final reliability of 2.5D packaging. Scalability of void-free via fill process with respect to TSV diameter and depth was addressed by using highly conformal barrier layers. Adhesion of Cu to the barrier layer was also improved upon detailed analysis to prevent delamination and improve reliability. A bottom up plating chemistry with significantly low impurity content was utilized to mitigate voids, seams and excessive overburden in the TSV. Its impact on stress and delamination issues and subsequent reliability failures was studied in details. The annealing process following TSV formation is systematically studied with varying conditions and characterized with metrology and electrical tests to investigate its effect on microstructure and material properties. The process parameters were tuned for CMP of Cu, adhesion and barrier layer without causing corrosion or delamination between adjacent layers. Process requirements for these modules in TSV process are closely related. This presentation will review the process module development in the context of their effects on the integrated TSV parameters (performance, reliability and scalability). We will also provide an in-depth discussion on process module optimization, electrical and mechanical characterization and cost reduction methodologies.

2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


2020 ◽  
Vol 26 (1) ◽  
pp. 86-93
Author(s):  
D. V. Slivinsky ◽  
I. A. Fomina ◽  
D. G. Menshikh

The presented study determines the role of business aviation in the modern economy and examines the specific features of its development in Russia.Aim. The study aims to analyze the development of business aviation in Russia and its correlation with economic development in general.Tasks. The authors determine the benefits of business aviation as a business tool, examine the specific features of the Russian business aviation market and problems of its development, and identify factors that affect the development of business aviation in Russia.Methods. This study uses the methods of comparative and retrospective analysis, cross-country comparison, systems approach, and expert analytics.Results. Business aviation is a new segment of civil aviation for Russia. Therefore, it is advisable to rely on foreign practices in the management of its development. In many countries, business aviation is a separate industry that specializes in providing transport services to a wide range of corporate clients and/or individuals. The development of this industry is associated with the economic growth rate and the development level of the national economy, and also depends on the national institutional specifics. This study describes the specific features of development of business aviation in Russia and problems arising in the organization and management of this type of business.Conclusions. The authors develop a system of factors affecting the development of business aviation in Russia, describe the major problems of this industry, and propose solutions. The results of this study can be used in the development (adjustment) of business aviation development strategies in Russia both at the industrial and corporate level, and in the implementation of the national policy in this field.


2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


2020 ◽  
Author(s):  
Salime Goharinezhad

BACKGROUND World Health Organization declared the vaccine hesitancy as a global public health threat in 2019. Since even a slight reduction in vaccine coverage rates can lead to a decrease in herd immunity, it is imperative to explore the underlying factors affecting vaccine hesitancy. in specific contexts, considering socioeconomic and cultural variation, to ensure interventions targeting hesitancy are well formulated and intervened. OBJECTIVE The main objective of this study is to identify underlying factors affecting vaccine hesitancy in Iran. METHODS A framework qualitative study will be conducted in the west of Tehran province in 2020. Participants in the study will be recruited hesitance-parents who extracted from the SIB system (an electronic health record in Iran) to maximize diversity. Interviews will be analyzed based on ''Determinants of Vaccine Hesitancy Matrix'' which developed by the WHO-SAGE Working Group. RESULTS deep understanding from the context-specific reasons for vaccine hesitancy cause to formulate better strategies to address them. The ultimate goal of this study is to inform future policies to increase the uptake of the vaccine in Iran. CONCLUSIONS This result of study will show variety opinions about vaccination among different types of socioeconomic and demographic households. The wide range of reasons related to vaccine hesitancy imply to more comprehensive, context-specific interventions. Today, the most important intervention issues focus on improving information about effectiveness and safety of vaccines, while other interventions for promoting vaccination is need to addressed.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 25
Author(s):  
Antonio Garrido Marijuan ◽  
Roberto Garay ◽  
Mikel Lumbreras ◽  
Víctor Sánchez ◽  
Olga Macias ◽  
...  

District heating networks deliver around 13% of the heating energy in the EU, being considered as a key element of the progressive decarbonization of Europe. The H2020 REnewable Low TEmperature District project (RELaTED) seeks to contribute to the energy decarbonization of these infrastructures through the development and demonstration of the following concepts: reduction in network temperature down to 50 °C, integration of renewable energies and waste heat sources with a novel substation concept, and improvement on building-integrated solar thermal systems. The coupling of renewable thermal sources with ultra-low temperature district heating (DH) allows for a bidirectional energy flow, using the DH as both thermal storage in periods of production surplus and a back-up heating source during consumption peaks. The ultra-low temperature enables the integration of a wide range of energy sources such as waste heat from industry. Furthermore, RELaTED also develops concepts concerning district heating-connected reversible heat pump systems that allow to reach adequate thermal levels for domestic hot water as well as the use of the network for district cooling with high performance. These developments will be demonstrated in four locations: Estonia, Serbia, Denmark, and Spain.


Textiles ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 55-85
Author(s):  
Tufail Hassan ◽  
Hafsa Jamshaid ◽  
Rajesh Mishra ◽  
Muhammad Qamar Khan ◽  
Michal Petru ◽  
...  

Recently, very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications due to their environmentally friendly nature, low cost, and good acoustic absorption capability. However, there are still challenges for researchers to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic fiber-based composites have good mechanical properties and can be used in a wide range of structural and automotive applications. This review aims to provide a short overview of the different factors that affect the acoustic properties of natural-fiber-based materials and composites. The various factors that influence acoustic performance are fiber type, fineness, length, orientation, density, volume fraction in the composite, thickness, level of compression, and design. The details of various factors affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Mayra K. S. Monteiro ◽  
Djalma R. Da Silva ◽  
Marco A. Quiroz ◽  
Vítor J. P. Vilar ◽  
Carlos A. Martínez-Huitle ◽  
...  

This study aims to investigate the applicability of a hybrid electrochemical sensor composed of cork and graphite (Gr) for detecting caffeine in aqueous solutions. Raw cork (RAC) and regranulated cork (RGC, obtained by thermal treatment of RAC with steam at 380 °C) were tested as modifiers. The results clearly showed that the cork-graphite sensors, GrRAC and GrRGC, exhibited a linear response over a wide range of caffeine concentration (5–1000 µM), with R2 of 0.99 and 0.98, respectively. The limits of detection (LOD), estimated at 2.9 and 6.1 µM for GrRAC and GrRGC, suggest greater sensitivity and reproducibility than the unmodified conventional graphite sensor. The low-cost cork-graphite sensors were successfully applied in the determination of caffeine in soft drinks and pharmaceutical formulations, presenting well-defined current signals when analyzing real samples. When comparing electrochemical determinations and high performance liquid chromatography measurements, no significant differences were observed (mean accuracy 3.0%), highlighting the potential use of these sensors to determine caffeine in different samples.


Sign in / Sign up

Export Citation Format

Share Document