Design of multi-step stepper motor coordinated control system based on bresenham algorithm

Author(s):  
Min Dai ◽  
Yuan Chen ◽  
Chaoqiang Zheng ◽  
Guo Yiming
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1291
Author(s):  
Balázs Németh

The paper proposes a novel learning-based coordination strategy for lateral control systems of automated vehicles. The motivation of the research is to improve the performance level of the coordinated system compared to the conventional model-based reconfigurable solutions. During vehicle maneuvers, the coordinated control system provides torque vectoring and front-wheel steering angle in order to guarantee the various lateral dynamical performances. The performance specifications are guaranteed on two levels, i.e., primary performances are guaranteed by Linear Parameter Varying (LPV) controllers, while secondary performances (e.g., economy and comfort) are maintained by a reinforcement-learning-based (RL) controller. The coordination of the control systems is carried out by a supervisor. The effectiveness of the proposed coordinated control system is illustrated through high velocity vehicle maneuvers.


2013 ◽  
Vol 680 ◽  
pp. 488-494
Author(s):  
Hai Ming Niu ◽  
Zhong Xu Han ◽  
Huan Pao Huang ◽  
Hong Min Zhang

Base on the mathematical model of a common coordinated control system in field of thermal, by analyzing characteristics of the controlled object supercritical once-through boiler coordinated control system, the article puts forward suggestions for improvement, and verifies the results of the analysis by test.


2011 ◽  
Vol 121-126 ◽  
pp. 3406-3410 ◽  
Author(s):  
Yang Yang ◽  
Yang Yang ◽  
Da Tong Qin ◽  
Jin Li

A new kind of pressure coordinated control system suite of regenerative braking system for hybrid electric vehicles (HEV) is proposed in this paper on the basis of appropriate transformation on traditional hydraulic braking system with ABS. AMEsim modular simulation platform is used to build a simulation model of the system. Dynamic performances of the key components and system are simulated and analyzed. And the simulation results show the effectiveness and feasibility of the pressure coordinated control system, which lays the foundation of the design and optimization for the regenerative braking system.


2010 ◽  
Vol 2 (1) ◽  
pp. 95-98
Author(s):  
Sigitas Šakalinis

The main task was investigation and precision improve­ment for a positioning drive, installed in a test rig for testing and calibration of the geodetic instruments at Vilnius Gediminas Technical University, Institute of Geodesy. Replacement of a stepper motor and a microstepping controller design increased positioning accuracy to 0.1''. Vibrations and noise of the test rig were significantly decreased using an optimized control algorithm, where resonating step frequencies were bypassed. The time of scale rotation between measurements (every 30°) achieved less than 1.5 min. Methods of the further precision improvement were selected, and this research is in progress now.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012030
Author(s):  
Jing Li ◽  
Yanyang Liu ◽  
Xianguo Qing ◽  
Kai Xiao ◽  
Ying Zhang ◽  
...  

Abstract The nuclear reactor control system plays a crucial role in the operation of nuclear power plants. The coordinated control of power control and steam generator level control has become one of the most important control problems in these systems. In this paper, we propose a mathematical model of the coordinated control system, and then transform it into a reinforcement learning model and develop a deep reinforcement learning control algorithm so-called DDPG algorithm to solve the problem. Through simulation experiments, our proposed algorithm has shown an extremely remarkable control performance.


Sign in / Sign up

Export Citation Format

Share Document