Yield-oriented biopotential amplifier design for PCB-based active dry electrodes

Author(s):  
Carlos E. Teixeira ◽  
Luis H. C. Ferreira
2016 ◽  
Vol 136 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Masahiro Inoue ◽  
Yasunori Tada ◽  
Yusaku Amano ◽  
Yosuke Itabashi ◽  
Tomonobu Sato ◽  
...  

Author(s):  
Sandeep R. Sainkar ◽  
Alice N. Cheeran ◽  
Gajendrakumar Shinde ◽  
Promod K. Sharma ◽  
Harish V. Dixit

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1578
Author(s):  
Luisa Euler ◽  
Li Guo ◽  
Nils-Krister Persson

Textile electrodes, also called textrodes, for biosignal monitoring as well as electrostimulation are central for the emerging research field of smart textiles. However, so far, only the general suitability of textrodes for those areas was investigated, while the influencing parameters on the contact impedance related to the electrode construction and external factors remain rather unknown. Therefore, in this work, six different knitted electrodes, applied both wet and dry, were compared regarding the influence of specific knitting construction parameters on the three-electrode contact impedance measured on a human forearm. Additionally, the influence of applying pressure was investigated in a two-electrode setup using a water-based agar dummy. Further, simulation of an equivalent circuit was used for quantitative evaluation. Indications were found that the preferred electrode construction to achieve the lowest contact impedance includes a square shaped electrode, knitted with a high yarn density and, in the case of dry electrodes, an uneven surface topography consisting of loops, while in wet condition a smooth surface is favorable. Wet electrodes are showing a greatly reduced contact impedance and are therefore to be preferred over dry ones; however, opportunities are seen for improving the electrode performance of dry electrodes by applying pressure to the system, thereby avoiding disadvantages of wet electrodes with fluid administration, drying-out of the electrolyte, and discomfort arising from a “wet feeling”.


Vacuum ◽  
2021 ◽  
pp. 110377
Author(s):  
M. Behtouei ◽  
B. Spataro ◽  
F. Di Paolo ◽  
A. Leggieri

Author(s):  
Walter Goncalez Filho ◽  
Joao A. Martino ◽  
Roberto Rangel ◽  
Paula G. D. Agopian ◽  
Eddy Simoen ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 263
Author(s):  
Roberto Quaglia

In high-frequency power-amplifier design, it is common practice to approach the design of reactive matching networks using linear simulators and targeting a reflection loss limit (referenced to the target impedance). It is well known that this is only a first-pass design technique, since output power or efficiency contours do not correspond to mismatch circles. This paper presents a method to improve the accuracy of this approach in the case of matching network design for power amplifiers based on gallium nitride (GaN) technology. Equivalent mismatch circles, which lay within the power or efficiency contours targeted by the design, are analytically obtained thanks to geometrical considerations. A summary table providing the parameters to use for typical contours is provided. The technique is demonstrated on two examples of power-amplifier design on the 6–12 GHz band using the non-linear large-signal model of a GaN High Electron Mobility Transistor (HEMT).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Apicella ◽  
Pasquale Arpaia ◽  
Mirco Frosolone ◽  
Nicola Moccaldi

AbstractA method for EEG-based distraction detection during motor-rehabilitation tasks is proposed. A wireless cap guarantees very high wearability with dry electrodes and a low number of channels. Experimental validation is performed on a dataset from 17 volunteers. Different feature extractions from spatial, temporal, and frequency domain and classification strategies were evaluated. The performances of five supervised classifiers in discriminating between attention on pure movement and with distractors were compared. A k-Nearest Neighbors classifier achieved an accuracy of 92.8 ± 1.6%. In this last case, the feature extraction is based on a custom 12 pass-band Filter-Bank (FB) and the Common Spatial Pattern (CSP) algorithm. In particular, the mean Recall of classification (percentage of true positive in distraction detection) is higher than 92% and allows the therapist or an automated system to know when to stimulate the patient’s attention for enhancing the therapy effectiveness.


Sign in / Sign up

Export Citation Format

Share Document