Detection of microplastics in a digested complex organic medium by Raman Tweezers

Author(s):  
Antonino Foti ◽  
Luca Nalbone ◽  
Maria G. Donato ◽  
Onofrio M. Marago ◽  
Filippo Giarratana ◽  
...  
1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


1998 ◽  
Vol 38 (1) ◽  
pp. 87-95 ◽  
Author(s):  
M. Roš ◽  
J. Vrtovšek

A combined anaerobic anoxic aerobic reactor for the treatment of the industrial wastewater that contains nitrogen and complex organic compounds as well as its design procedure is presented. The purpose of our experiments was to find a simple methodology that would provide combined reactor design. The reactor is based on the combination of anaerobic, anoxic and aerobic process in one unit only. It was found that the HRT even under 1 hour in the anaerobic zone is long enough for the efficient transformation of complex organic compounds into readily biodegradable COD which is then used in dentrification process. In the N-NO3 concentration range 1.5-50 mg/l the denitrification rate could be expressed as half-order reaction when the CODrb was in excess. N-NO3 removal efficiency is controlled by the recycle flow from the aerobic to the anoxic zone. Nitrification rate can be expressed as first, half or zero-order reaction with respect to effluent N-NH4 concentration. Nitrification rate depends on the dissolved oxygen concentration and hydrodynamic conditions in the reactor. Case study for design of a pilot plant of the combined reactor for treatment of pre-treated pharmaceutical wastewater is shown. Characteristics of pre-treated wastewater were: COD=200 mg/l, BOD5=20 mg/l, N-Kjeldahl=80 mg/l, N-NH4=70 mg/l, N-NOx&lt;1 mg/l, P-PO4=5 mg/l. Legal requirements for treated wastewater were: COD=&lt;100 mg/l, BOD5&lt;5 mg/l, N-NH4=&lt;1 mg/l, N-NOx=&lt;10 mg/l.


2021 ◽  
Author(s):  
Tuo Jiang ◽  
Samuele Bordi ◽  
Angus E. McMillan ◽  
Kuang-Yen Chen ◽  
Fumito Saito ◽  
...  

Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions using prepacked capsules with minimal user involvement.


Organics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 107-117
Author(s):  
Mattia Forchetta ◽  
Valeria Conte ◽  
Giulia Fiorani ◽  
Pierluca Galloni ◽  
Federica Sabuzi

Owing to the attractiveness of organic phosphonic acids and esters in the pharmacological field and in the functionalization of conductive metal-oxides, the research of effective synthetic protocols is pivotal. Among the others, ω-bromoalkylphosphonates are gaining particular attention because they are useful building blocks for the tailored functionalization of complex organic molecules. Hence, in this work, the optimization of Michaelis–Arbuzov reaction conditions for ω-bromoalkylphosphonates has been performed, to improve process sustainability while maintaining good yields. Synthesized ω-bromoalkylphosphonates have been successfully adopted for the synthesis of new KuQuinone phosphonate esters and, by hydrolysis, phosphonic acid KuQuinone derivatives have been obtained for the first time. Considering the high affinity with metal-oxides, KuQuinones bearing phosphonic acid terminal groups are promising candidates for biomedical and photo(electro)chemical applications.


Author(s):  
Glêydison Amarante Soares ◽  
Robson Carlos Alnoch ◽  
Glauco Silva Dias ◽  
Nadabe dos Santos Reis ◽  
Iasnaia Maria de Carvalho Tavares ◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 3414-3424
Author(s):  
Alec Paulive ◽  
Christopher N Shingledecker ◽  
Eric Herbst

ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.


Sign in / Sign up

Export Citation Format

Share Document