scholarly journals Low cost SIW Chebyshev bandpass filter with new input/output connection

Author(s):  
Augustine O. Nwajana ◽  
Kenneth S. K. Yeo ◽  
Amadu Dainkeh
Proceedings ◽  
2019 ◽  
Vol 2 (13) ◽  
pp. 751
Author(s):  
Bart Vereecke ◽  
Els Van Besien ◽  
Deniz Sabuncuoglu Tezcan ◽  
Nick Spooren ◽  
Nicolaas Tack ◽  
...  

Recent developments in multispectral cameras have demonstrated how compact and low-cost spectral sensors can be made by monolithically integrating filters on top of commercially available image sensors. In this paper, the fabrication of a RGB + NIR variation to such a single-chip imaging system is described, including the integration of a metallic shield to minimize crosstalk, and two interference filters: a NIR blocking filter, and a NIR bandpass filter. This is then combined with standard polymer based RGB colour filters. Fabrication of this chip is done in imec’s 200 mm cleanroom using standard CMOS technology, except for the addition of RGB colour filters and microlenses, which is outsourced.


2002 ◽  
Vol 25 (4) ◽  
pp. 307-319
Author(s):  
J. Rodriguez Tellez ◽  
N. T. Ali ◽  
B. Majeed

In this paper active inductor circuits are employed to assess their suitability for providing a tuning function in GaAs MMIC circuits. The specifications for a mobile handset amplifier and a bandpass filter operating from a 3 V supply rail are used as test vehicles. The design and simulation of the circuits employs a low-cost commercially available low pinch-off GaAs MESFET process. The suitability of active inductors for tuning in such applications considers issues such as frequency tuning range, noise, power consumption and stability.


Circuit World ◽  
2019 ◽  
Vol 45 (3) ◽  
pp. 141-147 ◽  
Author(s):  
Karthie S. ◽  
Salivahanan S.

Purpose This paper aims to present the design of a novel triangular-shaped wideband microstrip bandpass filter implemented on a low-cost substrate with a notched band for interference rejection. Design/methodology/approach The conventional dual-stub filter is embedded with simple fractal-based triangular-circular geometries through various iterations to reject wireless local area network (WLAN) signals with a notched band at 5.8 GHz. Findings The filter covers a wide frequency band from 3.1 to 8.8 GHz and has a fractional bandwidth of 98 per cent with the lower passband of 57.5 per cent and upper passband of 31.6 per cent separated by a notched band at 5.8 GHz. The proposed wideband prototype bandpass filter is fabricated in FR-4 substrate using PCB technology and the simulation results are validated with measurement results which include insertion loss, return loss and group delay. The fabricated filter has a sharp rejection of 28.3 dB at 5.8 GHz. Measured results show good agreement with simulated responses. The performance of the fractal-based wideband filter is compared with other wideband bandpass filters. Originality/value In the proposed work, a fractal-based wideband bandpass filter with a notched band is reported. The conventional dual-stub filter is deployed with triangular-circular geometry to design a wideband filter with a notched band to suppress interference signals at WLAN frequency. The proposed wideband filter exhibits smaller size and better interference rejection compared to other wideband bandpass filter designs implemented on low-cost substrate reported in the literature. The aforementioned wideband filter finds application in wideband wireless communication systems.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 93-106 ◽  
Author(s):  
Scott A. Longwell ◽  
Polly M. Fordyce

MicrIO is a low-cost, open-source hardware and software solution for automated sample input/output, bridging the gap between microfluidic devices and standard multiwell plates.


2014 ◽  
Vol 7 (6) ◽  
pp. 679-683
Author(s):  
Hung-Wei Wu ◽  
Shih-Hua Huang

A new compact quad-passband bandpass filter (BPF) using multi-mode resonators (MMRs) based on multi-layered substrate technique is proposed. The filter consists of a pair of multi-mode resonators (uniform impedance resonator and stepped impedance resonator) operated at 1.8/3.7 GHz on top layer and the other pair of the multi-mode resonators operated at 2.4/3 GHz on bottom layer. Source–load coupling lines are used to be the input/output (I/O) ports for providing the multi-paths propagations by cross-coupling effects in the filter. Specifically, the operated frequencies of the filter at 1.8/2.4/3/3.7 GHz with bandwidths of 6.7, 8.2, 4.6, and 7.2% are successfully designed and implemented. The proposed filter is useful for the multi-passband filters design, especially when the passbands are needed to be very close.


1987 ◽  
Vol 108 ◽  
Author(s):  
Robert W. Keyes

ABSTRACTPackaging technology must deal with the inexorable trend of semiconductor technology towards higher levels of integration. Extrapolation of present trends suggests that chips with 100 million devices will be produced by the end of the present century. The ability of technology to miniaturize pin-outs will limit the utilization of all of these devices for purposes other than memory. This limitation plus problems of supplying power and removing heat means that chips for high-performance large systems, where the demand for pins follows a well known rule, will probably be limited to levels of integration less than 100,000. A model of large system wiring shows that large increases in the density of wires in system packages and in the rate at which heat can be removed will be needed.Less severe limitations apply to low cost applications. No large increase in power per chip can be anticipated. However, more powerful microprocessors will become available and will need increased amounts of input-output capability.


Author(s):  
Juhika Girhe ◽  
Shubhangi Thaware ◽  
Bhushan Patil ◽  
Anand Sahani ◽  
Palash Kumbhare ◽  
...  

Technology is a never-ending process. To be able to design a product using the current technology that will be beneficial to the lives of others is a huge contribution to the community. This project presents the design and implementation of a low cost but flexible and secure cell phone based home automation system. The design is based on a standalone Arduino BT board and the home appliances are connected to the input/ output ports of this board via relays. The communication between the cell phone and the Arduino BT board is wireless. This project is designed to be low cost and scalable allowing variety of devices to be controlled with minimum changes to its core. Password protection is being used to only allow authorized users from accessing the appliances at home remotely.


Sign in / Sign up

Export Citation Format

Share Document