scholarly journals Fabrication of a CMOS-based Imaging Chip with Monolithically Integrated RGB and NIR Filters

Proceedings ◽  
2019 ◽  
Vol 2 (13) ◽  
pp. 751
Author(s):  
Bart Vereecke ◽  
Els Van Besien ◽  
Deniz Sabuncuoglu Tezcan ◽  
Nick Spooren ◽  
Nicolaas Tack ◽  
...  

Recent developments in multispectral cameras have demonstrated how compact and low-cost spectral sensors can be made by monolithically integrating filters on top of commercially available image sensors. In this paper, the fabrication of a RGB + NIR variation to such a single-chip imaging system is described, including the integration of a metallic shield to minimize crosstalk, and two interference filters: a NIR blocking filter, and a NIR bandpass filter. This is then combined with standard polymer based RGB colour filters. Fabrication of this chip is done in imec’s 200 mm cleanroom using standard CMOS technology, except for the addition of RGB colour filters and microlenses, which is outsourced.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4663
Author(s):  
Rafel Perello-Roig ◽  
Jaume Verd ◽  
Sebastià Bota ◽  
Jaume Segura

Based on experimental data, this paper thoroughly investigates the impact of a gas fluid flow on the behavior of a MEMS resonator specifically oriented to gas sensing. It is demonstrated that the gas stream action itself modifies the device resonance frequency in a way that depends on the resonator clamp shape with a corresponding non-negligible impact on the gravimetric sensor resolution. Results indicate that such an effect must be accounted when designing MEMS resonators with potential applications in the detection of volatile organic compounds (VOCs). In addition, the impact of thermal perturbations was also investigated. Two types of four-anchored CMOS-MEMS plate resonators were designed and fabricated: one with straight anchors, while the other was sustained through folded flexure clamps. The mechanical structures were monolithically integrated together with an embedded readout amplifier to operate as a self-sustained fully integrated oscillator on a commercial CMOS technology, featuring low-cost batch production and easy integration. The folded flexure anchor resonator provided a flow impact reduction of 5× compared to the straight anchor resonator, while the temperature sensitivity was enhanced to −115 ppm/°C, an outstanding result compared to the −2403 ppm/°C measured for the straight anchored structure.


Radiation ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 250-260
Author(s):  
Roy Shor ◽  
Yael Nemirovsky

This study focuses on a CMOS sensing system for Radon and alpha radiation, which is based on a semiconductor device that is integrated monolithically on a single chip with the Readout Circuitry, thus allowing fabrication of a low-power and low-cost sensing system. The new sensor is based on a new mosaic design of an array of Floating Gate non-volatile memory-like transistors, which are implemented in a standard CMOS technology, with a single polysilicon layer. The transistors are electrically combined in parallel and are operated at subthreshold, thus achieving very high sensitivity and reduced noise. The sensing system’s architecture and design is presented, along with key operation concepts, characterization, and analysis results. Alpha and radon exposure results are compared to commercial radon detectors. The new sensor, dubbed TODOS-Radon sensor, measures continuously, is battery operated and insensitive to humidity.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1522
Author(s):  
Sebastian Simmich ◽  
Andreas Bahr ◽  
Robert Rieger

The recording of neural signals with small monolithically integrated amplifiers is of high interest in research as well as in commercial applications, where it is common to acquire 100 or more channels in parallel. This paper reviews the recent developments in low-noise biomedical amplifier design based on CMOS technology, including lateral bipolar devices. Seven major circuit topology categories are identified and analyzed on a per-channel basis in terms of their noise-efficiency factor (NEF), input-referred absolute noise, current consumption, and area. A historical trend towards lower NEF is observed whilst absolute noise power and current consumption exhibit a widespread over more than five orders of magnitude. The performance of lateral bipolar transistors as amplifier input devices is examined by transistor-level simulations and measurements from five different prototype designs fabricated in 180 nm and 350 nm CMOS technology. The lowest measured noise floor is 9.9 nV/√Hz with a 10 µA bias current, which results in a NEF of 1.2.


2020 ◽  
Vol 59 (5) ◽  
pp. A167
Author(s):  
Shigeng Song ◽  
Des Gibson ◽  
Sam Ahmadzadeh ◽  
Hin On Chu ◽  
Barry Warden ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
Susana Campuzano ◽  
Paloma Yáñez-Sedeño ◽  
José Manuel Pingarrón

The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Rafel Perelló-Roig ◽  
Jaume Verd ◽  
Sebastià Bota ◽  
Jaume Segura

CMOS-MEMS resonators have become a promising solution thanks to their miniaturization and on-chip integration capabilities. However, using a CMOS technology to fabricate microelectromechanical system (MEMS) devices limits the electromechanical performance otherwise achieved by specific technologies, requiring a challenging readout circuitry. This paper presents a transimpedance amplifier (TIA) fabricated using a commercial 0.35-µm CMOS technology specifically oriented to drive and sense monolithically integrated CMOS-MEMS resonators up to 50 MHz with a tunable transimpedance gain ranging from 112 dB to 121 dB. The output voltage noise is as low as 225 nV/Hz1/2—input-referred current noise of 192 fA/Hz1/2—at 10 MHz, and the power consumption is kept below 1-mW. In addition, the TIA amplifier exhibits an open-loop gain independent of the parasitic input capacitance—mostly associated with the MEMS layout—representing an advantage in MEMS testing compared to other alternatives such as Pierce oscillator schemes. The work presented includes the characterization of three types of MEMS resonators that have been fabricated and experimentally characterized both in open-loop and self-sustained configurations using the integrated TIA amplifier. The experimental characterization includes an accurate extraction of the electromechanical parameters for the three fabricated structures that enables an accurate MEMS-CMOS circuitry co-design.


Author(s):  
Chung Hsing Li ◽  
Tzu-Chao Yan ◽  
Yuhsin Chang ◽  
Chyong Chen ◽  
Chien-Nan Kuo

Sign in / Sign up

Export Citation Format

Share Document