Photonic-Assisted Digital-to-Analog Conversion taking advantage of Low frequency technology

Author(s):  
Tsuyoshi Konishi ◽  
Yuta Kaihori ◽  
Masayuki Makino ◽  
Yu Yamasaki
Author(s):  
Alexander Vinnik ◽  
Tetiana Komisova ◽  
Roman Kratenko

Chemistry Department of H.S. Skovoroda Kharkiv National Pedagogical University develops a program-methodical complex (PMK) SchoolKit. It is based on three software tools: ChemKit - designed to measure temperature, electromotive force, amperage, control devices (heaters, power sources, etc.); SoundCardScientificKit - focused on the use of DAC (digital-to-analog converter) and ADC DAC (analog-to-digital converter) computer sound card; created for visualization of low-frequency signals and generation of signals of a special form; ColorKit - developed for processing photos, movies and visual data in real time for scientific purposes. This software has been tested in student and master's projects. All tools for working with visual data are divided into two categories: functions - non-specialized tools (allow to be fully creative, require some skills to work with the application, are a significant help in creating algorithms for processing visual data for the user's own software) and tools - specialized tools that simulate the operation of devices such as colorimeter, refractometer, spectrophotometer, polarimeter. To reduce the cost of projects, the paper proposes to use: digital-to-analog (DAC) and analog-to-digital (ADC) sound card converters, photo and video devices and other available peripherals in the development of digital learning tools. The paper also describes the interface and capabilities of ColorKit software. Its versatility shows that a student or teacher could build their own research system by adding and configuring macro modules. This software allows not only on the basis of visual data processing to make various measurements (colorimetric, refractometric, spectrophotometric, determination of the photosynthetic surface, etc.), but also to clearly demonstrate the principles of physicochemical devices. Peripherals for this software can be easily made by hand. Devices developed by students on the basis of ColorKit software have been repeatedly presented at various competitions: Junior Academy of Science, "Touch of Nature", "Water Net". The paper defines the main directions of applications of software ColorKit, ChemKit, SoundCardScientificKit in STEM training. Further prospects for the development of ColorKit software are outlined. The paper marks up the necessity of development of domestic educational digital laboratories and training of specialists in this field.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Robert E. Nordquist ◽  
J. Hill Anglin ◽  
Michael P. Lerner

A human breast carcinoma cell line (BOT-2) was derived from an infiltrating duct carcinoma (1). These cells were shown to have antigens that selectively bound antibodies from breast cancer patient sera (2). Furthermore, these tumor specific antigens could be removed from the living cells by low frequency sonication and have been partially characterized (3). These proteins have been shown to be around 100,000 MW and contain approximately 6% hexose and hexosamines. However, only the hexosamines appear to be available for lectin binding. This study was designed to use Concanavalin A (Con A) and Ricinus Communis (Ricin) agglutinin for the topagraphical localization of D-mannopyranosyl or glucopyranosyl and D-galactopyranosyl or DN- acetyl glactopyranosyl configurations on BOT-2 cell surfaces.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


1970 ◽  
Vol 13 (1) ◽  
pp. 37-40
Author(s):  
Gary Thompson ◽  
Marie Denman

Bone-conduction tests were administered to subjects who feigned a hearing loss in the right ear. The tests were conducted under two conditions: With and without occlusion of the non-test ear. It was anticipated that the occlusion effect, a well-known audiological principle, would operate to draw low frequency bone-conducted signals to the occluded side in a predictable manner. Results supported this expectation and are discussed in terms of their clinical implications.


Sign in / Sign up

Export Citation Format

Share Document