A Flexible Tactile Sensor for Three-dimensional Force Detection Based on Piezoelectric Sensing

Author(s):  
Yunyun Luo ◽  
Libo Zhao ◽  
Guoxi Luo ◽  
Zhikang Li ◽  
Ping Yang ◽  
...  
2017 ◽  
Vol 9 (27) ◽  
pp. 22685-22693 ◽  
Author(s):  
Zifeng Wang ◽  
Ruijuan Jiang ◽  
Guangming Li ◽  
Yiyan Chen ◽  
Zijie Tang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7489
Author(s):  
Hu Shi ◽  
Boyang Zhang ◽  
Xuesong Mei ◽  
Qichun Song

Robot-assisted minimally invasive surgery (MIS) has received increasing attention, both in the academic field and clinical operation. Master/slave control is the most widely adopted manipulation mode for surgical robots. Thus, sensing the force of the surgical instruments located at the end of the slave manipulator through the main manipulator is critical to the operation. This study mainly addressed the force detection of the surgical instrument and force feedback control of the serial surgical robotic arm. A measurement device was developed to record the tool end force from the slave manipulator. An elastic element with an orthogonal beam structure was designed to sense the strain induced by force interactions. The relationship between the acting force and the output voltage was obtained through experiment, and the three-dimensional force output was decomposed using an extreme learning machine algorithm while considering the nonlinearity. The control of the force from the slave manipulator end was achieved. An impedance control strategy was adopted to restrict the force interaction amplitude. Modeling, simulation, and experimental verification were completed on the serial robotic manipulator platform along with virtual control in the MATLAB/Simulink software environment. The experimental results show that the measured force from the slave manipulator can provide feedback for impedance control with a delay of 0.15 s.


Author(s):  
Lingfeng Zhu ◽  
Yancheng Wang ◽  
Xin Wu ◽  
Deqing Mei

Flexible tactile sensors have been utilized for epidermal pressure sensing, motion detecting, and healthcare monitoring in robotic and biomedical applications. This paper develops a novel piezoresistive flexible tactile sensor based on porous graphene sponges. The structural design, working principle, and fabrication method of the tactile sensor are presented. The developed tactile sensor has 3 × 3 sensing units and has a spatial resolution of 3.5 mm. Then, experimental setup and characterization of this tactile sensor are conducted. Results indicated that the developed flexible tactile sensor has good linearity and features two sensitivities of 2.08 V/N and 0.68 V/N. The high sensitivity can be used for tiny force detection. Human body wearing experiments demonstrated that this sensor can be used for distributed force sensing when the hand stretches and clenches. Thus the developed tactile sensor may have great potential in the applications of intelligent robotics and healthcare monitoring.


IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Zhihua Wang ◽  
Shiming Sun ◽  
Na Li ◽  
Tao Yao ◽  
Dianli Lv

Author(s):  
Yichao Yang ◽  
Zhili Hao

This paper reports on a microfluidic-based tactile sensor capable of detecting forces along two directions and torque about one direction. The 3-Degree-Of-Freedom (3-DOF) force/torque sensor encompasses a symmetric three-dimensional (3D) microstructure embedded with two sets of electrolyte-enabled distributed resistive transducers underneath. The 3D microstructure is built into a rectangular block with a loading-bump on its top and two microchannels at its bottom. Together with electrode pairs distributed along the microchannel length, electrolyte in each microchannel functions as a set of three resistive transducers. While a normal force results in a resistance increase in the two sets of transducers, a shear force causes opposite resistance changes in the two sets of transducers. Conversely, a torque leads to the opposite resistance changes in the two side transducers in each set. Soft lithography and CNC molding are combined to fabricate a prototype tactile sensor. The experimental results validate the feasibility of using this microfluidic-based tactile sensor for 3-DOF force/torque detection.


2000 ◽  
Vol 80 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Tao Mei ◽  
Wen J. Li ◽  
Yu Ge ◽  
Yong Chen ◽  
Lin Ni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document