scholarly journals A Technique for Estimating RMS Waveheight and Dominant Wave Period Using A Coherent Shipboard Radar

Author(s):  
D. Trizna ◽  
D. Porter
Keyword(s):  
2017 ◽  
Vol 135 ◽  
pp. 170-182 ◽  
Author(s):  
Chendi Wang ◽  
Jianfang Fei ◽  
Juli Ding ◽  
Ruiqing Hu ◽  
Xiaogang Huang ◽  
...  

2018 ◽  
Vol 33 (4) ◽  
pp. 955-966 ◽  
Author(s):  
Paul A. Hwang ◽  
Edward J. Walsh

Abstract Making use of the fetch- and duration-limited nature of wind-wave growth inside tropical cyclones, an algorithm is developed to estimate the maximum significant wave height and dominant wave period of surface waves generated by tropical cyclone wind fields. The results of the maximum significant wave height and dominant wave period are further approximated by simple power functions of the maximum wind speed. The exponents of the power functions are almost constant, and the proportionality coefficients can be approximated by second-order polynomial functions of the radius of maximum wind speed (RMW). The predicted maximum values agree well with results derived from simultaneous wind and wave measurements obtained during 11 hurricane reconnaissance and research missions in six hurricanes.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
J. P. Le Roux

The sea surface is normally irregular as a result of dissimilar waves generated in different areas. To describe such a sea state, various methods have been proposed, but there is no general consensus as to the best characterizing parameters of the interwaves. Three simple methods are proposed here to calculate a characteristic interwave period, length, and height for fully developed, colinear deepwater waves. The results of this study indicate that the interwave period and length are equal or very close to the period and length of the dominant component wave, irrespective of the periods of the subordinate waves. In cases where the dominant wave period is double or more than double the periods of the subordinate waves, the wave period, length and height are within 4% of the dominant wave parameters, so that such interfering, irregular waves have virtually the same characteristics as monochromatic waves. Secondary, individual interwaves propagate at the velocity of the component wave with the shortest period, that is, slower than the primary interwaves which have the same celerity as the dominant component wave.


Author(s):  
Olga Kuznetsova ◽  
Olga Kuznetsova ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinsky ◽  
...  

Based on numerical modelling evolution of beach under waves with height 1,0-1,5 m and period 7,5 and 10,6 sec as well as spectral wave parameters varying cross-shore analysed. The beach reformation of coastal zone relief is spatially uneven. It is established that upper part of underwater beach profile become terraced and width of the terrace is in direct pro-portion to wave height and period on the seaward boundary but inversely to angle of wave energy spreading. In addition it was ascertain that the greatest transfiguration of profile was accompanied by existence of bound infragravity waves, smaller part of its energy and shorter mean wave period as well as more significant roller energy.


2021 ◽  
Vol 9 (4) ◽  
pp. 383
Author(s):  
Ting Yu ◽  
Jichao Wang

Mean wave period (MWP) is one of the key parameters affecting the design of marine facilities. Currently, there are two main methods, numerical and data-driven methods, for forecasting wave parameters, of which the latter are widely used. However, few studies have focused on MWP forecasting, and even fewer have investigated it with spatial and temporal information. In this study, correlations between ocean dynamic parameters are explored to obtain appropriate input features, significant wave height (SWH) and MWP. Subsequently, a data-driven approach, the convolution gated recurrent unit (Conv-GRU) model with spatiotemporal characteristics, is utilized to field forecast MWP with 1, 3, 6, 12, and 24-h lead times in the South China Sea. Six points at different locations and six consecutive moments at every 12-h intervals are selected to study the forecasting ability of the proposed model. The Conv-GRU model has a better performance than the single gated recurrent unit (GRU) model in terms of root mean square error (RMSE), the scattering index (SI), Bias, and the Pearson’s correlation coefficient (R). With the lead time increasing, the forecast effect shows a decreasing trend, specifically, the experiment displays a relatively smooth forecast curve and presents a great advantage in the short-term forecast of the MWP field in the Conv-GRU model, where the RMSE is 0.121 m for 1-h lead time.


2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1310
Author(s):  
Andreu Salcedo-Bosch ◽  
Francesc Rocadenbosch ◽  
Miguel A. Gutiérrez-Antuñano ◽  
Jordi Tiana-Alsina

This work proposes a new wave-period estimation (L-dB) method based on the power-spectral-density (PSD) estimation of pitch and roll motional time series of a Doppler wind lidar buoy under the assumption of small angles (±22 deg) and slow yaw drifts (1 min), and the neglection of translational motion. We revisit the buoy’s simplified two-degrees-of-freedom (2-DoF) motional model and formulate the PSD associated with the eigenaxis tilt of the lidar buoy, which was modelled as a complex-number random process. From this, we present the L-dB method, which estimates the wave period as the average wavelength associated to the cutoff frequency span at which the spectral components drop off L decibels from the peak level. In the framework of the IJmuiden campaign (North Sea, 29 March–17 June 2015), the L-dB method is compared in reference to most common oceanographic wave-period estimation methods by using a TriaxysTM buoy. Parametric analysis showed good agreement (correlation coefficient, ρ = 0.86, root-mean-square error (RMSE) = 0.46 s, and mean difference, MD = 0.02 s) between the proposed L-dB method and the oceanographic zero-crossing method when the threshold L was set at 8 dB.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097677
Author(s):  
Zhilin Liu ◽  
Linhe Zheng ◽  
Guosheng Li ◽  
Shouzheng Yuan ◽  
Songbai Yang

In recent years, the trimaran as a novel ship has been greatly developed. The subsequent large vertical motion needs to be studied and resolved. In this article, an experimental study for a trimaran vertical stabilization control is carried out. Three modes including the bare trimaran (the trimaran without appendages, the trimaran with fixed appendages, and the trimaran with controlled appendages) are performed through model tests in a towing tank. The model tests are performed in regular waves. The range of wave period is 2.0–4.0 s, and the speed of the carriage is 2.93 and 6.51 m/s. The results of the three modes show the fixed appendages and the actively controlled appendages are all effective for the vertical motion reduction of the trimaran. Moreover, the controlled appendages are more effective for the vertical stability performance of the trimaran.


Sign in / Sign up

Export Citation Format

Share Document