scholarly journals The Impact of Multi-MHz Switching Frequencies on Dynamic On-Resistance in GaN-on-Si HEMTs

2020 ◽  
Vol 1 ◽  
pp. 210-215
Author(s):  
Grayson Zulauf ◽  
Mattia Guacci ◽  
Juan M. Rivas-Davila ◽  
Johann W. Kolar
Keyword(s):  
Author(s):  
Luke Yates ◽  
Thomas L. Bougher ◽  
Thomas Beechem ◽  
Baratunde A. Cola ◽  
Samuel Graham

The development of gallium nitride (GaN) on silicon (Si) substrates is a critical technology for potential low cost power electronics. These devices can accommodate faster switching speeds, hotter temperatures, and high voltages needed for power electronics applications. However, the lattice mismatch and difference in crystal structure between 111 Si and c-axis hexagonal GaN requires the use of buffer layers in order to grow device quality epitaxial layers. For lateral high electron mobility transistors, these interfacial layers act as a potential source of increased thermal boundary resistance (TBR) which impedes heat flow out of the GaN on Si devices. In addition, these interfacial layers impact the growth and residual stress in the GaN epitaxial layer which can play a role in device reliability. In this work we use optical methods to experimentally measure a relatively low TBR for GaN on Si with an intermediate buffer layer to be 3.8 ± 0.4 m2K/GW. The effective TBR of a material stack that encompasses GaN on Si with a superlattice (SL) buffer is also measured, and is found to be 107 ± 1 m2K/GW. In addition the residual state of strain in the GaN layer is measured for both samples, and is found to vary significantly between them. Thermal conductivity of a 0.8μm GaN layer on AlN buffer is determined to be 126 ± 25 W/m-K, while a 0.84 μm GaN layer with C-doping on a SL structure is determined to be 112 ± 29 W/m-K.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 445
Author(s):  
Kalparupa Mukherjee ◽  
Carlo De Santi ◽  
Matteo Buffolo ◽  
Matteo Borga ◽  
Shuzhen You ◽  
...  

This work investigates p+n−n GaN-on-Si vertical structures, through dedicated measurements and TCAD simulations, with the ultimate goal of identifying possible strategies for leakage and breakdown optimization. First, the dominant leakage processes were identified through temperature-dependent current–voltage characterization. Second, the breakdown voltage of the diodes was modelled through TCAD simulations based on the incomplete ionization of Mg in the p+ GaN layer. Finally, the developed simulation model was utilized to estimate the impact of varying the p-doping concentration on the design of breakdown voltage; while high p-doped structures are limited by the critical electric field at the interface, low p-doping designs need to contend with possible depletion of the entire p-GaN region and the consequent punch-through. A trade-off on the value of p-doping therefore exists to optimize the breakdown.


2018 ◽  
Vol 88-90 ◽  
pp. 610-614 ◽  
Author(s):  
Dario Pagnano ◽  
Giorgia Longobardi ◽  
Florin Udrea ◽  
Jinming Sun ◽  
Mohamed Imam ◽  
...  

2019 ◽  
Vol 66 (12) ◽  
pp. 5103-5110 ◽  
Author(s):  
Sayed Ali Albahrani ◽  
Dhawal Mahajan ◽  
Stefan Moench ◽  
Richard Reiner ◽  
Patrick Waltereit ◽  
...  
Keyword(s):  

1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


Sign in / Sign up

Export Citation Format

Share Document