Effects of Annealing and Light on Co-evaporated Methylammonium Lead Iodide Perovskites using Kelvin Probe Force Microscopy in Ultra-High Vacuum

Author(s):  
Thibaut Gallet ◽  
Evandro M. Lanzoni ◽  
Alex Redinger
2020 ◽  
Vol 2 (6) ◽  
pp. 2371-2375 ◽  
Author(s):  
Yuuki Adachi ◽  
Huan Fei Wen ◽  
Quanzhen Zhang ◽  
Masato Miyazaki ◽  
Yasuhiro Sugawara ◽  
...  

The charge state of Au nanoclusters on oxidized/reduced rutile TiO2 (110) surfaces were investigated by a combination of non-contact atomic force microscopy and Kelvin probe force microscopy at 78 K under ultra-high vacuum.


2011 ◽  
Vol 2 ◽  
pp. 252-260 ◽  
Author(s):  
George Elias ◽  
Thilo Glatzel ◽  
Ernst Meyer ◽  
Alex Schwarzman ◽  
Amir Boag ◽  
...  

The role of the cantilever in quantitative Kelvin probe force microscopy (KPFM) is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111). The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been calculated and found to be relatively small.


2012 ◽  
Vol 1455 ◽  
Author(s):  
Oliver Ochedowski ◽  
Benedict Kleine Bußmann ◽  
Marika Schleberger

ABSTRACTWe have employed atomic force and Kelvin-Probe force microscopy to study graphene sheets exfoliated on TiO2 under the influence of local heating achieved by laser irradiation. Exfoliation and irradiation took place under ambient conditions, the measurements were performed in ultra high vacuum. We show that after irradiation times of 6 min, an increase of the surface potential is observed which indicates a decrease of p-type carrier concentration. We attribute this effect to the removal of adsorbates like water and oxygen. After irradiation times of 12 min our topography images reveal severe structural modifications of graphene. These resemble the nanocrystallite network which form on graphene/SiO2 but after much longer irradiation times. From our results we propose that short laser heating at moderate powers might offer a way to clean graphene without inducing unwanted structural modifications.


2008 ◽  
Vol 47 (7) ◽  
pp. 6160-6163 ◽  
Author(s):  
Shin-ichi Yamamoto ◽  
Hideki Yoshioka ◽  
Yukiharu Uraoka ◽  
Takashi Fuyuki ◽  
Mitsuhiro Okuda ◽  
...  

2015 ◽  
Vol 6 ◽  
pp. 2485-2497 ◽  
Author(s):  
Urs Gysin ◽  
Thilo Glatzel ◽  
Thomas Schmölzer ◽  
Adolf Schöner ◽  
Sergey Reshanov ◽  
...  

Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection. Results: We present Kelvin probe force microscopy (KPFM) measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.


1999 ◽  
Vol 75 (2) ◽  
pp. 286-288 ◽  
Author(s):  
Ch. Sommerhalter ◽  
Th. W. Matthes ◽  
Th. Glatzel ◽  
A. Jäger-Waldau ◽  
M. Ch. Lux-Steiner

Sign in / Sign up

Export Citation Format

Share Document