Optimization of In-situ and Ex-situ doped p+ Passivating Contact for High Efficiency p-TOPCon Solar Cell Application

Author(s):  
Wook-Jin Choi ◽  
Keeya Madani ◽  
Ying-Yuan Huang ◽  
Aditi Jain ◽  
Young-Woo Ok ◽  
...  
Nanoscale ◽  
2017 ◽  
Vol 9 (46) ◽  
pp. 18535-18545 ◽  
Author(s):  
Fan-Li Meng ◽  
Jiao-Jiao Wu ◽  
Er-Fei Zhao ◽  
Yan-Zhen Zheng ◽  
Mei-Lan Huang ◽  
...  

In situ embedding of upconversion nanocrystals in perovskite flm is developed and lead to a high PCE with enabled NIR response for planar solar cell.


2013 ◽  
Vol 06 (02) ◽  
pp. 1350014 ◽  
Author(s):  
ZHANG LAN ◽  
JIHUAI WU ◽  
JIANMING LIN ◽  
MIAOLIANG HUANG

A high efficiency dye-sensitized solar cell (DSC) with nanocrystallite TiO2 (nano- TiO2 ) secondary structure in the photoanode was successfully fabricated via a simple one step doctor blade printing method with a special nano- TiO2 paste containing micro-sized nano- TiO2 aggregates formed in situ. The special secondary structure in the photoanode shows improved optical absorption, increased light scattering ability, and enhanced electron transport and collection efficiency, resulting in high power conversion efficiency of 7.30% with 6 μm thin nano- TiO2 film in the photoanode, and the highest value of 9.28% by increasing the thickness of the nano- TiO2 film to 11 μm.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3768
Author(s):  
Zechen Ma ◽  
Ruifeng Li ◽  
Rui Xiong ◽  
Yinggan Zhang ◽  
Chao Xu ◽  
...  

Designing the electronic structures of the van der Waals (vdW) heterostructures to obtain high-efficiency solar cells showed a fascinating prospect. In this work, we screened the potential of vdW heterostructures for solar cell application by combining the group III–VI MXA (M = Al, Ga, In and XA = S, Se, Te) and elementary group VI XB (XB = Se, Te) monolayers based on first-principle calculations. The results highlight that InSe/Te vdW heterostructure presents type-II electronic band structure feature with a band gap of 0.88 eV, where tellurene and InSe monolayer are as absorber and window layer, respectively. Interestingly, tellurene has a 1.14 eV direct band gap to produce the photoexcited electron easily. Furthermore, InSe/Te vdW heterostructure shows remarkably light absorption capacities and distinguished maximum power conversion efficiency (PCE) up to 13.39%. Our present study will inspire researchers to design vdW heterostructures for solar cell application in a purposeful way.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Sangho Kim ◽  
Gwan Seung Jeong ◽  
Na Yeon Park ◽  
Jea-Young Choi

In this report, we present a process for the fabrication and tapering of a silicon (Si) nanopillar (NP) array on a large Si surface area wafer (2-inch diameter) to provide enhanced light harvesting for Si solar cell application. From our N,N-dimethyl-formamide (DMF) solvent-controlled spin-coating method, silica nanosphere (SNS in 310 nm diameter) coating on the Si surface was demonstrated successfully with improved monolayer coverage (>95%) and uniformity. After combining this method with a reactive ion etching (RIE) technique, a high-density Si NP array was produced, and we revealed that controlled tapering of Si NPs could be achieved after introducing a two-step RIE process using (1) CHF3/Ar gases for SNS selective etching over Si and (2) Cl2 gas for Si vertical etching. From our experimental and computational study, we show that an effectively tapered Si NP (i.e., an Si nanotip (NT)) structure could offer a highly effective omnidirectional and broadband antireflection effect for high-efficiency Si solar cell application.


Author(s):  
Hiba H.ISSA

The preparation of the AgSb (SxSe1-x)2 was done by the quenching method. It is a quaternary substance with sulfur. Preparation of AgSb (SxSe1-x)2 thin films with sulfur was done on the glass substrate at room temperature 303K with a pressure vacuum of (0.01) bar by using a technique called pulsed laser deposition at thickness (~100 nanometres). The structural properties of alloys thin films are tested by x-ray diffraction analysis. Our findings showed that all compounds have polycrystalline structure with cubic phase due to the deposition of the AgSb (SxSe1-x)2. The atomic force microscopy is used for showing mean size, wherever mean size decreases, and the roughness becomes more irregularity with the increase of sulphur level in the alloys. The electrical measurements of AgSb (SxSe1-x)2 /p-Si and AgSb (SxSe1-x)2/n-Si heterojunctions which is included I-V properties cell area structures of(0.61) cm2 were measured. The AgSb (SxSe1-x)2/n-Si showed the best results with a maximum open voltage Voc of these heterojunctions with Sulfur level x= 0.4). It was most suitable for solar cell high efficiency (η = 0.07%) at x= 0.4 on n-Si substrate. Keywords: Ag Sb, Quenching Method, Cell Application.


2009 ◽  
Vol 1165 ◽  
Author(s):  
Jacobo Álvarez-García ◽  
Xavier Fontané ◽  
Victor Izquierdo-Roca ◽  
Alejandro Perez-Rodriguez ◽  
Joan Ramón Morante ◽  
...  

AbstractThis work reports the use of strategies based on Raman scattering for process monitoring of electrodeposited based S rich CuIn(S,Se)2 solar cells. Main vibrational modes in the Raman spectra are sensitive to features related to the crystalline quality, chemical composition and presence of secondary phases in the chalcopyrite layers, being all these features relevant for the optoelectronic properties of the final devices. Ex-situ and in-situ measurements during the electrochemical step allow the direct assessment on the formation of Se rich secondary phases which are related to the stoichiometry of the grown precursors. The analysis of the relative intensity of the spectral contribution from these phases allows early detection of deviations of precursor stoichiometry in relation to the optimum composition range in terms of solar cell efficiency. The applicability of the technique for the in-situ monitoring of the electrodeposition process is also discussed


Sign in / Sign up

Export Citation Format

Share Document