A vibrotactile stimulation system for improving postural control and knee joint proprioception in lower-limb amputees

Author(s):  
Clemente Lauretti ◽  
Giulia Pinzari ◽  
Anna Lisa Ciancio ◽  
Angelo Davalli ◽  
Rinaldo Sacchetti ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6533
Author(s):  
Xinxin Li ◽  
Zuojun Liu ◽  
Xinzhi Gao ◽  
Jie Zhang

A novel method for recognizing the phases in bicycling of lower limb amputees using support vector machine (SVM) optimized by particle swarm optimization (PSO) is proposed in this paper. The method is essential for enhanced prosthetic knee joint control for lower limb amputees in carrying out bicycling activity. Some wireless wearable accelerometers and a knee joint angle sensor are installed in the prosthesis to obtain data on the knee joint and ankle joint horizontal, vertical acceleration signal and knee joint angle. In order to overcome the problem of high noise content in the collected data, a soft-hard threshold filter was used to remove the noise caused by the vibration. The filtered information is then used to extract the multi-dimensional feature vector for the training of SVM for performing bicycling phase recognition. The SVM is optimized by PSO to enhance its classification accuracy. The recognition accuracy of the PSO-SVM classification model on testing data is 93%, which is much higher than those of BP, SVM and PSO-BP classification models.


2021 ◽  
Author(s):  
Lijun Chen ◽  
Yanggang Feng ◽  
Baojun Chen ◽  
Qining Wang ◽  
Kunlin Wei

Abstract BackgroundFor lower-limb amputees, wearing a prosthetic limb helps restore their motor abilities for daily activities. However, the prosthesis's potential benefits are hindered by limited somatosensory feedback from the affected limb and its prosthesis. Previous studies have examined various sensory substitution systems to alleviate this problem; the prominent approach is to convert foot-ground interaction to tactile stimulations. However, positive outcomes for improving amputees' postural stability are still rare. We hypothesize that the intuitive design of tactile signals based on psychophysics shall enhance the feasibility and utility of real-time sensory substitution for lower-limb amputees. MethodsWe designed a wearable device consisting of four pressure sensors and two vibrators and tested it among the unilateral transtibial amputees (n=7) and the able-bodied (n=8). The real-time measurements of foot pressure were fused into a single representation of foot-ground interaction force, which was encoded by varying vibration intensity of the two vibrators attached to the participants’ forearm. The layout of vibrators was spatially congruent with the foot force sensors' placement; the vibration intensity followed a logarithmic function of the force representation, in keeping with principles of tactile psychophysics. The participants were tested with a classical postural stability task in which visual disturbances perturbed their quiet standing. ResultsWith a brief familiarization of the system, the participants exhibited better posture stability against visual disturbances when switching on sensory substitution than without. The body sway was substantially reduced, as shown in head movements and excursions of the center of pressure. The improvement was present for both amputees and able-bodied controls and was particularly pronounced in more challenging conditions with larger visual disturbances. ConclusionsSubstituting otherwise-missing foot pressure feedback with vibrotactile signals can improve postural stability for lower-limb amputees. The intuitive design of the mapping between the foot-ground interaction force and the tactile signals is essential for the user to utilize the surrogated tactile signals for postural control, especially for situations that their postural control is challenged.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katharina Fuchs ◽  
Thomas Krauskopf ◽  
Torben B. Lauck ◽  
Lukas Klein ◽  
Marc Mueller ◽  
...  

Patients with a lower limb amputation rely more on visual feedback to maintain balance than able-bodied individuals. Altering this sensory modality in amputees thus results in a disrupted postural control. However, little is known about how lower limb amputees cope with augmented visual information during balance tasks. In this study, we investigated how unilateral transfemoral amputees incorporate visual feedback of their center of pressure (CoP) position during quiet standing. Ten transfemoral amputees and ten age-matched able-bodied participants were provided with real-time visual feedback of the position of their CoP while standing on a pressure platform. Their task was to keep their CoP within a small circle in the center of a computer screen placed at eye level, which could be achieved by minimizing their postural sway. The visual feedback was then delayed by 250 and 500 ms and was combined with a two- and five-fold amplification of the CoP displacements. Trials with eyes open without augmented visual feedback as well as with eyes closed were further performed. The overall performance was measured by computing the sway area. We further quantified the dynamics of the CoP adjustments using the entropic half-life (EnHL) to study possible physiological mechanisms behind postural control. Amputees showed an increased sway area compared to the control group. The EnHL values of the amputated leg were significantly higher than those of the intact leg and the dominant and non-dominant leg of controls. This indicates lower dynamics in the CoP adjustments of the amputated leg, which was compensated by increasing the dynamics of the CoP adjustments of the intact leg. Receiving real-time visual feedback of the CoP position did not significantly reduce the sway area neither in amputees nor in controls when comparing with the eyes open condition without visual feedback of the CoP position. Further, with increasing delay and amplification, both groups were able to compensate for small visual perturbations, yet their dynamics were significantly lower when additional information was not received in a physiologically relevant time frame. These findings may be used for future design of neurorehabilitation programs to restore sensory feedback in lower limb amputees.


2021 ◽  
Vol 29 ◽  
pp. 433-440
Author(s):  
Hyeong-Min Jeon ◽  
Ki-Kwang Lee ◽  
Jun-Young Lee ◽  
Ju-Hwan Shin ◽  
Gwang-Moon Eom

BACKGROUND: Joint loads in different walking strategies during stair descent have been investigated in terms of the joint moment in association with the risk of osteoarthritis. However, the absorption mechanisms of the potential energy loss are not known. OBJECTIVE: This study aims to compare the mechanical energy absorptions in lower limb joints in different initial foot contact strategies. METHODS: Nineteen young subjects walked down on instrumented stairs with two different strategies, i.e., forefoot and rearfoot strike. Power and energy at lower limb joints during stance phase were compared between strategies. RESULTS: Lower limb joints absorbed 73 ± 11% of the potential energy released by descending stairs and there was no difference between strategies. Rearfoot strategy absorbed less energy than forefoot strategy at the ankle joint in the 1st phase, which was compensated mainly by more energy absorption at the knee in the 2nd phase and less energy generation at the hip joints in the 3rd phase. CONCLUSION: The results suggest that a leg absorbs most of the potential energy while descending stairs irrespective of the walking strategies and that any reduction of energy absorption at one joint is compensated by other joints. Greater energy absorption at the knee joint compared to the other joints suggests high burden of knee joint muscles and connective tissues during stair-descent, which is even more significant for the rearfoot strike strategy.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Thilina H. Weerakkody ◽  
Thilina Dulantha Lalitharatne ◽  
R. A. R. C. Gopura

The human foot consists of complex sets of joints. The adaptive nature of the human foot enables it to be stable on any uneven surface. It is important to have such adaptive capabilities in the artificial prosthesis to achieve most of the essential movements for lower-limb amputees. However, many existing lower-limb prostheses lack the adaptive nature. This paper reviews lower-limb adaptive foot prostheses. In order to understand the design concepts of adaptive foot prostheses, the biomechanics of human foot have been explained. Additionally, the requirements and design challenges are investigated and presented. In this review, adaptive foot prostheses are classified according to actuation method. Furthermore, merits and demerits of present-day adaptive foot prostheses are presented based on the hardware construction. The hardware configurations of recent adaptive foot prostheses are analyzed and compared. At the end, potential future developments are highlighted.


2013 ◽  
Vol 10 (1) ◽  
pp. 98 ◽  
Author(s):  
John G Buckley ◽  
Alan R De Asha ◽  
Louise Johnson ◽  
Clive B Beggs

Sign in / Sign up

Export Citation Format

Share Document