Lateral InAs/Si p-Type Tunnel FETs Integrated on Si—Part 2: Simulation Study of the Impact of Interface Traps

2016 ◽  
Vol 63 (11) ◽  
pp. 4240-4247 ◽  
Author(s):  
Saurabh Sant ◽  
Kirsten Moselund ◽  
Davide Cutaia ◽  
Heinz Schmid ◽  
Mattias Borg ◽  
...  
2021 ◽  
Vol 71 ◽  
pp. 101881
Author(s):  
Therese M.-L. Andersson ◽  
Tor Åge Myklebust ◽  
Mark J. Rutherford ◽  
Bjørn Møller ◽  
Isabelle Soerjomataram ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Steve Kanters ◽  
Mohammad Ehsanul Karim ◽  
Kristian Thorlund ◽  
Aslam Anis ◽  
Nick Bansback

Abstract Background The use of individual patient data (IPD) in network meta-analyses (NMA) is rapidly growing. This study aimed to determine, through simulations, the impact of select factors on the validity and precision of NMA estimates when combining IPD and aggregate data (AgD) relative to using AgD only. Methods Three analysis strategies were compared via simulations: 1) AgD NMA without adjustments (AgD-NMA); 2) AgD NMA with meta-regression (AgD-NMA-MR); and 3) IPD-AgD NMA with meta-regression (IPD-NMA). We compared 108 parameter permutations: number of network nodes (3, 5 or 10); proportion of treatment comparisons informed by IPD (low, medium or high); equal size trials (2-armed with 200 patients per arm) or larger IPD trials (500 patients per arm); sparse or well-populated networks; and type of effect-modification (none, constant across treatment comparisons, or exchangeable). Data were generated over 200 simulations for each combination of parameters, each using linear regression with Normal distributions. To assess model performance and estimate validity, the mean squared error (MSE) and bias of treatment-effect and covariate estimates were collected. Standard errors (SE) and percentiles were used to compare estimate precision. Results Overall, IPD-NMA performed best in terms of validity and precision. The median MSE was lower in the IPD-NMA in 88 of 108 scenarios (similar results otherwise). On average, the IPD-NMA median MSE was 0.54 times the median using AgD-NMA-MR. Similarly, the SEs of the IPD-NMA treatment-effect estimates were 1/5 the size of AgD-NMA-MR SEs. The magnitude of superior validity and precision of using IPD-NMA varied across scenarios and was associated with the amount of IPD. Using IPD in small or sparse networks consistently led to improved validity and precision; however, in large/dense networks IPD tended to have negligible impact if too few IPD were included. Similar results also apply to the meta-regression coefficient estimates. Conclusions Our simulation study suggests that the use of IPD in NMA will considerably improve the validity and precision of estimates of treatment effect and regression coefficients in the most NMA IPD data-scenarios. However, IPD may not add meaningful validity and precision to NMAs of large and dense treatment networks when negligible IPD are used.


2013 ◽  
Vol 440 ◽  
pp. 82-87 ◽  
Author(s):  
Mohammad Jahangir Alam ◽  
Mohammad Ziaur Rahman

A comparative study has been made to analyze the impact of interstitial iron in minority carrier lifetime of multicrystalline silicon (mc-Si). It is shown that iron plays a negative role and is considered very detrimental for minority carrier recombination lifetime. The analytical results of this study are aligned with the spatially resolved imaging analysis of iron rich mc-Si.


2014 ◽  
Vol 536-537 ◽  
pp. 1431-1434 ◽  
Author(s):  
Ying Zhu ◽  
Yin Cheng Zhang ◽  
Shun He Qi ◽  
Zhi Xiang

Based on the molecular dynamics (MD) theory, in this article, we made a simulation study on titanium nanometric cutting process at different cutting depths, and analyzed the changes of the cutting depth to the effects on the work piece morphology, system potential energy, cutting force and work piece temperature in this titanium nanometric cutting process. The results show that with the increase of the cutting depth, system potential energy, cutting force and work piece temperature will increase correspondingly while the surface quality of machined work piece will decrease.


Author(s):  
Andreas Schenk ◽  
Reto Rhyner ◽  
Mathieu Luisier ◽  
Cedric Bessire
Keyword(s):  

2021 ◽  
Author(s):  
Zhihai Sun ◽  
Jiaxi Liu ◽  
Ying Zhang ◽  
Ziyuan Li ◽  
Leyu Peng ◽  
...  

Abstract Van der Waals (VDW) heterostructures have attracted significant research interest due to their tunable interfacial properties and potential in a wide range of applications such as electronics, optoelectronic, and heterocatalysis. In this work, the impact of interfacial defects on the electronic structures and photocatalytic properties of hBN/MX2(M = Mo, W, and X = S, Se) are studied using density functional theory calculations. The results reveal that the band alignment of hBN/MX2 can be adjusted by introducing vacancies and atomic doping. The type-I band alignment of the host structure was maintained in the heterostructure with n-type doping in the hBN sublayer. Interestingly, the band alignment changed to the type-II heterostructrue as VB defect and p-type doping was introduced in the hBN sublayer. This could be profitable for the separation of photo-generated electron−hole pairs at the interfaces and is highly desired for heterostructure photocatalysis. In addition, two Z-type heterostructures including hBN(BeB)/MoS2, hBN(BeB)/MoSe2, and hBN(VN)/MoSe2 were achieved, showing reducing band gap and ideal redox potential for water splitting. Our results reveal the possibility of engineering the interfacial and photocatalysis properties of hBN/MX2 heterostructures via interfacial defects.


Sign in / Sign up

Export Citation Format

Share Document