scholarly journals Microdosimetry Using Rhodamine B Within Macro- and Microsystems for Radiofrequency Signals Exposures of Biological Samples

2020 ◽  
Vol 68 (3) ◽  
pp. 1142-1150 ◽  
Author(s):  
Amani Nefzi ◽  
Lynn Carr ◽  
Claire Dalmay ◽  
Arnaud Pothier ◽  
Philippe Leveque ◽  
...  
Author(s):  
W. R. Schucany ◽  
G. H. Kelsoe ◽  
V. F. Allison

Accurate estimation of the size of spheroid organelles from thin sectioned material is often necessary, as uniquely homogenous populations of organelles such as vessicles, granules, or nuclei often are critically important in the morphological identification of similar cell types. However, the difficulty in obtaining accurate diameter measurements of thin sectioned organelles is well known. This difficulty is due to the extreme tenuity of the sectioned material as compared to the size of the intact organelle. In populations where low variance is suspected the traditional method of diameter estimation has been to measure literally hundreds of profiles and to describe the “largest” as representative of the “approximate maximal diameter”.


Author(s):  
C. F. Oster

Although ultra-thin sectioning techniques are widely used in the biological sciences, their applications are somewhat less popular but very useful in industrial applications. This presentation will review several specific applications where ultra-thin sectioning techniques have proven invaluable.The preparation of samples for sectioning usually involves embedding in an epoxy resin. Araldite 6005 Resin and Hardener are mixed so that the hardness of the embedding medium matches that of the sample to reduce any distortion of the sample during the sectioning process. No dehydration series are needed to prepare our usual samples for embedding, but some types require hardening and staining steps. The embedded samples are sectioned with either a prototype of a Porter-Blum Microtome or an LKB Ultrotome III. Both instruments are equipped with diamond knives.In the study of photographic film, the distribution of the developed silver particles through the layer is important to the image tone and/or scattering power. Also, the morphology of the developed silver is an important factor, and cross sections will show this structure.


Author(s):  
Patrick Echlin

A number of papers have appeared recently which purport to have carried out x-ray microanalysis on fully frozen hydrated samples. It is important to establish reliable criteria to be certain that a sample is in a fully hydrated state. The morphological appearance of the sample is an obvious parameter because fully hydrated samples lack the detailed structure seen in their freeze dried counterparts. The electron scattering by ice within a frozen-hydrated section and from the surface of a frozen-hydrated fracture face obscures cellular detail. (Fig. 1G and 1H.) However, the morphological appearance alone can be quite deceptive for as Figures 1E and 1F show, parts of frozen-dried samples may also have the poor morphology normally associated with fully hydrated samples. It is only when one examines the x-ray spectra that an assurance can be given that the sample is fully hydrated.


Author(s):  
Rahmiana Zein ◽  
Mutia Khuratul Aini ◽  
Hermansyah Aziz

Biosorpsi zat warna Rhodamine B menggunakan cangkang Pensi (Corbicula moltkiana) telah dikaji. Percobaan dilakukan dengan system batch guna memperoleh kondisi optimum biosorspi zat warna. Kapasitas biosorpsi zat warna pada pH 2 adalah 0.9958 mg/g, dengan konsentrasi larutan mula-mula 150 mg/L waktu kontak 105 menit, massa biosorben 0.1 g, ukuran partikel 32 µm dan temperature pengeringan biosorben pada 75oC. Model isotherm Langmuir menunjukkan bahwa proses penyerapan berlangsung secara kimia dan biosorpsi homogeny dari adsorbat (Rhodamine B) pada permukaan biosorben membentuk lapisan tunggal dengan nilai R2 0.9966. Analisis XRF menunjukkan bahwa penurunan kadar unsur logam pada cangkang Pensi membuktikan bahwa proses biosorpsi berlangsung dengan pertukaran kation. Hasil analisis spektrum FT-IR membuktikan adanya interaksi antaramolekul Rhodamin B dengan gugus fungsi pada cangkang Pensi. Analisis dengan SEM memperlihatkan bahwa pori-pori cangkang Pensi telah terisi penuh oleh molekul Rhodamin B. Kondisi optimum biosorpsi telah diaplikasikan pada limbah kerupuk merah dengan kapasitas penyerapan sebesar 0,2835 mg/g.   The biosorption of Rhodamine B dyes by Pensi (Corbicula moltkiana) shell has been investigated. The experiment was conducted in batch sistem in order to obtain the optimum conditions of dye biosorption. Biosorption capacity of dye was 0.9958 mg/g at pH 2, initial concentration 150 mg/L, contact time 105 minutes, biosorbent mass 0.1 gram, particle size 32 µ m and biosorbent drying temperature was at 75oC. The Langmuir Isotherm model showed chemisorption and homogeneous biosorption process of adsorbates onto the biosorbent surface formed monolayer dye molecules on the biosorbent surface with R2 value was 0.9966. XRF analysis showed that reduction of metals unsure quantity of pensi shell indicated biosorption process was occupied through cationic exchange. The result of FTIR spectra analysis indicated an interaction between Rhodamin B molecules and functional group of pensi shell. SEM analysis showed that the pensi shell pores were completely filled by Rhodamine B molecules. The optimum condition of biosorption has been aplicated in red chips wastewater industry with biosorption capacity was 0.2835 mg/g.


Sign in / Sign up

Export Citation Format

Share Document