Plasma Flows From Linear High-Voltage Nanosecond Vacuum Discharges on the Surface of Polymer Materials at 2-6 kA

Author(s):  
Ivan F. Punanov ◽  
Rafail V. Emlin ◽  
Pavel A. Morozov ◽  
Yevgeny N. Shcherbakov
2021 ◽  
Vol 2021 (2) ◽  
pp. 36-45
Author(s):  
V.A. Shuvalov ◽  
◽  
Yu.P. Kuchugurnyi ◽  
M.I. Pysmennyi ◽  
S.M. Kulahin ◽  
...  

Principles of simulation of the physical-chemical and electromagnetic interaction of a spacecraft with the near-satellite environment and principles of probe diagnostics of rarefied plasma flows onboard a spacecraft are stated. Equivalence criteria are formulated for the interaction of a spacecraft with the near-satellite environment and hypersonic rarefied plasma flows on dedicated setups, in particular on the plasmaelectrodynamic setup of the Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, which has the status of the National Patrimony of Ukraine. The features of spacecraft interaction with the near-satellite environment were studied along the following three lines: - degradation of the materials and performance characteristics of spacecraft components in a long-term orbital service: - magnetohydrodynamic interaction of a spacecraft with hypersonic rarefied plasma flows; - probe diagnostic of rarefied plasma flows onboard a spacecraft. Along the first line, a calculation-and-experiment procedure was developed to evaluate the power decrease of spacecraft silicon solar batteries under long-term (~ 10 years) exposure to the space factors and the near-satellite environment in circular orbits. Principles of accelerated life tests for the resistance of spacecraft polymer materials to long-term exposure to atomic oxygen flows and vacuum ultraviolet radiation were developed. Simultaneous exposure of polymers to atomic oxygen and vacuum ultraviolet radiation results in the synergic effect of mass loss by materials that contain a monomer of the (CH)n group. Along the second line, models were formulated for magnetohydrodynamic interaction in the magnetized spacecraft – ionospheric plasma system. It was shown that the interaction of a ?0,8 – 1.5 T magnetic field of a space debris object (in particular, a spent spacecraft) with the ionospheric plasma produces an electromagnetic drag force sufficient for removing it to a low orbit followed by its burn-up in the dense atmosphere. Along the third line, procedures were developed for ionospheric plasma probe diagnostics using onboard instrumentation that includes mutually orthogonal cylindrical electrical probes and a two-channel neutral-particle detector. It was shown that this instrumentation with the use of proprietary output signal interpretation algorithms and procedures allows one to locate sources of space-time disturbances in inospheric plasma parameters caused by natural and technogeneous catastrophic phenomena on the subsatellite track.


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Author(s):  
L. E. Thomas ◽  
J. S. Lally ◽  
R. M. Fisher

In addition to improved penetration at high voltage, the characteristics of HVEM images of crystalline materials are changed markedly as a result of many-beam excitation effects. This leads to changes in optimum imaging conditions for dislocations, planar faults, precipitates and other features.Resolution - Because of longer focal lengths and correspondingly larger aberrations, the usual instrument resolution parameter, CS174 λ 374 changes by only a factor of 2 from 100 kV to 1 MV. Since 90% of this change occurs below 500 kV any improvement in “classical” resolution in the MVEM is insignificant. However, as is widely recognized, an improvement in resolution for “thick” specimens (i.e. more than 1000 Å) due to reduced chromatic aberration is very large.


Author(s):  
T. Mukai ◽  
T. E. Mitchell

Radiation-induced homogeneous precipitation in Ni-Be alloys was recently observed by high voltage electron microscopy. A coupling of interstitial flux with solute Be atoms is responsible for the precipitation. The present investigation further shows that precipitation is also induced at thin foil surfaces by electron irradiation under a high vacuum.


Author(s):  
J. S. Lally ◽  
R. Evans

One of the instrumental factors often limiting the resolution of the electron microscope is image defocussing due to changes in accelerating voltage or objective lens current. This factor is particularly important in high voltage electron microscopes both because of the higher voltages and lens currents required but also because of the inherently longer focal lengths, i.e. 6 mm in contrast to 1.5-2.2 mm for modern short focal length objectives.The usual practice in commercial electron microscopes is to design separately stabilized accelerating voltage and lens supplies. In this case chromatic aberration in the image is caused by the random and independent fluctuations of both the high voltage and objective lens current.


Author(s):  
Hans Ris

The High Voltage Electron Microscope Laboratory at the University of Wisconsin has been in operation a little over one year. I would like to give a progress report about our experience with this new technique. The achievement of good resolution with thick specimens has been mainly exploited so far. A cold stage which will allow us to look at frozen specimens and a hydration stage are now being installed in our microscope. This will soon make it possible to study undehydrated specimens, a particularly exciting application of the high voltage microscope.Some of the problems studied at the Madison facility are: Structure of kinetoplast and flagella in trypanosomes (J. Paulin, U. of Georgia); growth cones of nerve fibers (R. Hannah, U. of Georgia Medical School); spiny dendrites in cerebellum of mouse (Scott and Guillery, Anatomy, U. of Wis.); spindle of baker's yeast (Joan Peterson, Madison) spindle of Haemanthus (A. Bajer, U. of Oregon, Eugene) chromosome structure (Hans Ris, U. of Wisconsin, Madison). Dr. Paulin and Dr. Hanna are reporting their work separately at this meeting and I shall therefore not discuss it here.


Author(s):  
N.J. Tighe ◽  
H.M. Flower ◽  
P.R. Swann

A differentially pumped environmental cell has been developed for use in the AEI EM7 million volt microscope. In the initial version the column of gas traversed by the beam was 5.5mm. This permited inclusion of a tilting hot stage in the cell for investigating high temperature gas-specimen reactions. In order to examine specimens in the wet state it was found that a pressure of approximately 400 torr of water saturated helium was needed around the specimen to prevent dehydration. Inelastic scattering by the water resulted in a sharp loss of image quality. Therefore a modified cell with an ‘airgap’ of only 1.5mm has been constructed. The shorter electron path through the gas permits examination of specimens at the necessary pressure of moist helium; the specimen can still be tilted about the side entry rod axis by ±7°C to obtain stereopairs.


Author(s):  
J.L. Williams ◽  
K. Heathcote ◽  
E.J. Greer

High Voltage Electron Microscope already offers exciting experimental possibilities to Biologists and Materials Scientists because the increased specimen thickness allows direct observation of three dimensional structure and dynamic experiments on effectively bulk specimens. This microscope is designed to give maximum accessibility and space in the specimen region for the special stages which are required. At the same time it provides an ease of operation similar to a conventional instrument.


Sign in / Sign up

Export Citation Format

Share Document