Analysis of tumor morphology and vasculature in an animal model of colorectal cancer using in vivo contrast-enhanced endoluminal ultrasound biomicroscopy

Author(s):  
Rossana Soletti ◽  
Marcelo A. P. de Britto ◽  
Helena L. Borges ◽  
Joao C. Machado
2013 ◽  
Vol 20 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Kelly Z. Alves ◽  
Rossana C. Soletti ◽  
Marcelo A.P. de Britto ◽  
Dyanna G. de Matos ◽  
Mônica Soldan ◽  
...  

2013 ◽  
Vol 28 (12) ◽  
pp. 1613-1620 ◽  
Author(s):  
Marcelo Alexandre Pinto de Britto ◽  
Rossana Colla Soletti ◽  
Alberto Schanaider ◽  
Kalil Madi ◽  
Heitor Siffert Pereira de Souza ◽  
...  

2016 ◽  
Vol 42 (11) ◽  
pp. 2687-2696 ◽  
Author(s):  
Rodrigo de Magalhães Gomes ◽  
Rossana C. Soletti ◽  
Mônica Soldan ◽  
Kalil Madi ◽  
F. Stuart Foster ◽  
...  

Author(s):  
Asim Pervaiz ◽  
Michael Zepp ◽  
Rania Georges ◽  
Frank Bergmann ◽  
Saqib Mahmood ◽  
...  

Abstract Purpose Liver metastasis is observed in up to 50% of colorectal cancer (CRC) patients. Available treatment options are limited and disease recurrence is often. Chemokine receptor 5 (CCR5) has attracted attention as novel therapeutic target for treating cancers. In this study, we reinforced the importance of CCR5 as therapeutic target in CRC and its liver metastasis by applying in vitro, in vivo and clinical investigations. Methods By targeting CCR5 via siRNAs or an FDA approved antagonist (maraviroc), we investigated the ensuing antineoplastic effects in three CRC cell lines. An animal model for CRC liver metastasis was used to evaluate time-dependent expressional modulation of the CCR5 axis by cDNA microarray. The model was also used to evaluate the in vivo efficacy of targeting CCR5 by maraviroc. Circulatory and tumor associated levels of CCR5 and its cognate ligands (CCL3, CCL4, CCL5) were analyzed by ELISA, qRT-PCR and immunohistochemistry. Results Targeting the CCR5 inhibited proliferative, migratory and clonogenic properties and interfered with cell cycle-related signaling cascades. In vivo findings showed significant induction of the CCR5 axis during the early liver colonization phase. Treatment with maraviroc significantly inhibited CRC liver metastasis in the animal model. Differential expression profiles of circulatory and tumor associated CCR5/ligands were observed in CRC patients and healthy controls. Conclusion The findings indicate that targeting the CCR5 axis can be an effective strategy for treating CRC liver metastasis.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 10 ◽  
Author(s):  
Aditya Nath Pandey ◽  
Kuldeep Rajpoot ◽  
Sunil K. Jain

Background:: Several studies have suggested potential aptitude of polylactic-co-glycolic acid (PLGA)-derived nanoparticles (NPs) to improve the antitumor efficacy of anticancer drugs against colon cancer. Further, conjugation of lectins over the surface of the NPs may ameliorate interaction and thus enhance attachment of NPs with receptors. Objective:: The main goal of the study was to prepare and evaluate targeting potential (in vivo) of the optimized NPs against colorectal cancer. Methods:: The 5-fluorouracil (5-FU) loaded and wheat germ agglutinin (WGA)-conjugated PLGA-NPs (WFUNPs) were prepared and then they were evaluated in vivo for targeting aptitude of formulation using gamma scintigraphy after oral delivery. The WGA-conjugated and non-conjugated optimized NPs were compared for any significant results. Further, optimized formulations were also assessed for different parameters such as radiolabeling efficiency, sodium pertechnetate uptake, stability of NPs, and organ distribution study. Results:: Findings suggested prolonged retention of 99mTc-tagged WFUNPs in the colonic region after 24 h study. Eventually, the outcome from conjugated formulation revealed enhanced bioavailability of the drug in blood plasma for up to 24 h. Conclusion:: In conclusion, WGA-conjugation to NPs could improve the performance of the PLGA-NPs in the treatment of colorectal cancer.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Zhang ◽  
Zhaohui Zhong ◽  
Mei Li ◽  
Jingyi Chen ◽  
Tingru Lin ◽  
...  

AbstractAbnormally expressed and/or phosphorylated Abelson interactor 1 (ABI1) participates in the metastasis and progression of colorectal cancer (CRC). ABI1 presents as at least 12 transcript variants (TSVs) by mRNA alternative splicing, but it is unknown which of them is involved in CRC metastasis and prognosis. Here, we firstly identified ABI1-TSV-11 as a key TSV affecting the metastasis and prognosis of left-sided colorectal cancer (LsCC) and its elevated expression is related to lymph node metastasis and shorter overall survival (OS) in LsCC by analyzing data from The Cancer Genome Atlas and TSVdb. Secondly, ABI1-TSV-11 overexpression promoted LoVo and SW480 cells adhesion and migration in vitro, and accelerated LoVo and SW480 cells lung metastasis in vivo. Finally, mechanism investigations revealed that ABI1-isoform-11 interacted with epidermal growth factor receptor pathway substrate 8 (ESP8) and regulated actin dynamics to affect LoVo and SW480 cells biological behaviors. Taken together, our data demonstrated that ABI1-TSV-11 plays an oncogenic role in LsCC, it is an independent risk factor of prognosis and may be a potential molecular marker and therapeutic target in LsCC.


Sign in / Sign up

Export Citation Format

Share Document