Temperature-dependent studies of the electrical properties and the conduction mechanism of HfOx-based RRAM

Author(s):  
Chiyui Ahn ◽  
Seyoung Kim ◽  
Tayfun Gokmen ◽  
Oliver Dial ◽  
Mark Ritter ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Mingzhi Dai ◽  
Karim Khan ◽  
Shengnan Zhang ◽  
Kemin Jiang ◽  
Xingye Zhang ◽  
...  

Abstract Sub-gap density of states (DOS) is a key parameter to impact the electrical characteristics of semiconductor materials-based transistors in integrated circuits. Previously, spectroscopy methodologies for DOS extractions include the static methods, temperature dependent spectroscopy and photonic spectroscopy. However, they might involve lots of assumptions, calculations, temperature or optical impacts into the intrinsic distribution of DOS along the bandgap of the materials. A direct and simpler method is developed to extract the DOS distribution from amorphous oxide-based thin-film transistors (TFTs) based on Dual gate pulse spectroscopy (GPS), introducing less extrinsic factors such as temperature and laborious numerical mathematical analysis than conventional methods. From this direct measurement, the sub-gap DOS distribution shows a peak value on the band-gap edge and in the order of 1017–1021/(cm3·eV), which is consistent with the previous results. The results could be described with the model involving both Gaussian and exponential components. This tool is useful as a diagnostics for the electrical properties of oxide materials and this study will benefit their modeling and improvement of the electrical properties and thus broaden their applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Qian Li ◽  
Yun Liu ◽  
Andrew Studer ◽  
Zhenrong Li ◽  
Ray Withers ◽  
...  

We characterized the temperature dependent (~25–200°C) electromechanical properties and crystal structure of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals usingin situelectrical measurement and neutron diffraction techniques. The results show that the poled crystal experiences an addition phase transition around 120°C whereas such a transition is absent in the unpoled crystal. It is also found that the polar order persists above the maximum dielectric permittivity temperature at which the crystal shows a well-defined antiferroelectric behavior. The changes in the electrical properties and underlying crystal structure are discussed in the paper.


2013 ◽  
Author(s):  
L. Dasaradha Rao ◽  
N. Ramesha Reddy ◽  
A. Ashok Kumar ◽  
V. Rajagopal Reddy

2021 ◽  
Author(s):  
Adel M. El Sayed ◽  
Samy El-Gamal

Abstract Solid polymer electrolytes (SPEs) based on nanocomposites are attracting increasing attention due to their technological and industrial applications. In the present work, a facile aqueous casting method was utilized for the preparation of a starch-chitosan blend loaded with nanosized NaTiO3 (NTO) and co-mixed with ErCl3 (EC) salt. The interactions between OH group of starch and N–H group of chitosan with NTO and EC, and the films' crystallinity and surface morphology were studied by FTIR, XRD, and SEM. UV-Vis-NIR measurements showed the indirect (direct) optical band gaps decreased from 3.4 to 2.0 eV (4.5 to ~ 2.5 eV), i.e., ~ 41–44 % shrinking. At the time that the films maintained a reasonable transmittance. The optical constants of the films; extinction coefficient, refractive index, and the carrier’s concentration to the electron effective mass (N/m*) are reported. N/m* of the pure blend was 4.85 x 1039 (kg-1 m-3) increased to 1.64 times and 2.8 times after loading with 1.0% NTO and 20% EC, respectively. Various dielectric parameters (dielectric constant ε', dielectric loss ε'', ac conductivity σac, and dielectric moduli M' & M'') were evaluated in the frequency range 5 Hz - 1 MHz and temperatures of 298 - 353 K. The conductivity (σac) of the blend increased from 1.10×10-3 S/cm to 8.17×10-3 S/cm after modifying with 20% EC, i.e., became 8 times greater. Moreover, the influence of NTO and EC on the conduction mechanism and Cole-Cole plots are discussed. The improvements in the optical and electrical properties of EC/NTO/blend illustrate the possibility of extending the applications of these smart materials to include optoelectronic devices, batteries, and supercapacitors.


2018 ◽  
Vol 5 (7) ◽  
pp. 15180-15185
Author(s):  
Kathrina P. Gumahad ◽  
Reynaldo M. Vequizo ◽  
Majvell Kay G. Odarve-Vequizo ◽  
Bianca Rae B. Sambo-Fabricante

2020 ◽  
Vol 8 (4) ◽  
pp. 1095-1107
Author(s):  
Imen Raies ◽  
Sharah A. Al Dulmani ◽  
Lamia Ben Farhat ◽  
Etemad E. Fadlallah ◽  
Mongi Amami

Sign in / Sign up

Export Citation Format

Share Document