Dielectric breakdown mechanism of HfSiON/SiO/sub 2/ gate dielectric

Author(s):  
K. Torii ◽  
T. Aoyama ◽  
S. Kamiyama ◽  
Y. Tamura ◽  
S. Miyazaki ◽  
...  
Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


2013 ◽  
Vol 26 (3) ◽  
pp. 281-296
Author(s):  
E. Atanassova ◽  
A. Paskaleva

The effect of both the process-induced defects and the dopant on the time-dependent-dielectric breakdown in Ta2O5 stacks is discussed. The breakdown degradation is analyzed in terms of specific properties of high-k stacks which make their dielectric breakdown mechanism completely different from that of classical SiO2. The relative impact of a number of factors constituting the reliability issues in Ta2O5-based capacitors (trapping in pre-existing traps, stress-induced new traps generation, the presence of interface layer at Si and the role of the dopant) is clarified.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000116-000120 ◽  
Author(s):  
Takuya Hoshina ◽  
Mikio Yamazaki ◽  
Hiroaki Takeda ◽  
Takaaki Tsurumi

We precisely measured the dielectric breakdown strength of SrTiO3, CaTiO3, and CaZrO3 ceramics as a function of temperature, and revealed the dielectric breakdown mechanism of the ceramics. For the dielectric breakdown test, ceramics specimens with a lot of round-bottom holes were prepared. Using the specimens, the breakdown positions were stabilized and a reliability of breakdown strength was improved as well as the measurement efficiency. As a result of the dielectric breakdown tests, it was found that the dielectric breakdown strength decreased with increasing permittivity at room temperature and the permittivity dependence of breakdown strength obeyed Griffith type energy release rate model. At high temperature above 100ºC, the dielectric breakdown mechanism of SrTiO3 and CaTiO3 ceramics was explained by an intrinsic breakdown model. In contrast, an intrinsic dielectric breakdown of CaZrO3 ceramics didn't occur in the measurement temperature range up to 210ºC. To obtain a high dielectric breakdown strength at high temperature, the dielectric permittivity is required to be low to some extent and the defect concentration of oxygen vacancies should be minimized in the perovskite-structured oxide.


Author(s):  
Xavier Federspiel ◽  
Mustapha Rafik ◽  
Melissa Arabi ◽  
Antoine Cros ◽  
Florian Cacho

Sign in / Sign up

Export Citation Format

Share Document